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Preamble

These notes accompany the first part of the PhD microeconomics sequence. They cover
choice under uncertainty and general equilibrium theory. The write-up is still a
work in progress, and I will continue to update it. If you spot any mistakes or typos,
please let me know.

I have aimed for a conversational tone rather than the more formal and encyclope-
dic style of, say, Mas-Colell et al. (1995). I assume no prior knowledge of the topics,
though—as usual—some mathematical maturity helps (and I hope you will develop it
along the way!). Each lecture summarizes what we cover in class, followed by exercises
and suggestions for further reading. Whenever a result is proved, I have tried to give
the simplest proof available. This often makes explanations and proofs a bit longer than
strictly necessary, but, I hope, also more accessible.

Before diving in, you might enjoy some non-technical background that helps frame
the topics we will study: Kreps (1988, ch. 1), Debreu (1959, pp. ix–xi), Myerson (1997,
pp. 1–7), and Gilboa (2009, chs. 1–2).

You will occasionally see smaller text like this. These remarks are not essential for following

the main exposition, but they add context or point to related ideas. Feel free to skip them on a

first pass.

These notes draw on several sources. The main reference is Mas-Colell et al. (1995),
but both here and in the text you will find pointers to alternative or complementary
readings. A short reading list follows. If you would like more references or wish to
discuss any of the material, just send me an email—I am always happy to talk.

Have fun!

Choice under uncertainty.
• Mas-Colell et al. (1995), ch. 6.

• Kreps (1988), chs. 4-6.

• Fishburn (1970), ch. 8.

• Kreps (2013), chs. 5-6.

• Gilboa (2009).

General equilibrium theory.
• Mas-Colell et al. (1995) chs. 15–17.

• Thomson (2011), sec 4.3.

• Kreps (2013), chs. 14–15.

• Debreu (1959).

• Hildenbrand & Kirman (1976).
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Lecture 1

Introduction to uncertainty

“We are who we are. Lotteries are stupid.”

House (2011)

1.1 How to model uncertainty

The outcomes of our decisions are often uncertain, so we need a choice theory that takes
uncertainty into account. Let us begin by thinking about how to represent uncertainty.
Suppose you make a bet with a friend: if a fair coin toss results in heads, you receive 10

euros; otherwise, you pay 10 euros to your friend. There are two possible outcomes, 10
and −10, and since the coin is fair, each occurs with probability 1/2. What are the main
ingredients of this example?

First, we started from a set of possible outcomes—in this case, the monetary trans-
fers 10 and −10. Second, we specified the probability of each outcome occurring, 1/2

for both. We call such an object—a set of outcomes, each associated with a probabil-
ity—a lottery. Denote the set of outcomes by X. Generic elements of X will be written
x, y, z, or sometimes x1, x2, . . .. For simplicity, assume that X is finite. Outcomes alone
are not enough to describe a lottery: we also need a probability distribution over out-
comes, as in the 1/2–1/2 distribution of the fair coin above. The set of all lotteries over
X is denoted by ∆(X).1 Each element of ∆(X) is a function p : X → [0, 1] such that∑

x∈X p(x) = 1; it maps each outcome x to a number p(x) ∈ [0, 1], representing the prob-
ability that x occurs.2 We can equivalently represent a lottery as a vector, for example
p = (p(x), p(y), p(z)) if X = {x, y, z}.

Example 1.1. In the example above, the set of outcomes is {10,−10}, and the lottery
p ∈ ∆({10,−10}) induced by the fair coin toss satisfies p(10) = p(−10) = 1/2. ■

We can depict lotteries using a tree diagram, as in Figure 1.1.

1Why the notation ∆? You will see soon.
2Why do we write a sum

∑
x∈X p(x) = 1 rather than an integral?
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Figure 1.1: Lottery from Example 1.1.

Remark 1.1. Notice that in this setup we are missing something: whether the coin lands
on heads or tails is irrelevant; only the probabilities of the outcomes matter, not the events
that generate them. This is a limitation of the model, which we will address later when
we introduce a state-space representation of uncertainty.

The set of lotteries ∆(X) has structure: we can combine its elements in a meaningful
way. For example, consider a lottery r that yields lottery p with probability α and lottery
q with probability 1−α, where α ∈ [0, 1]. Such an object is called a compound lottery.
It is still an element of ∆(X), and we write r = αp+ (1− α)q.

For instance, if p(10) = 1/2 and q(10) = 1/4, the associated compound lottery is shown
on the left of Figure 1.2. We can compute the probability that outcome 10 occurs in this
compound lottery:

α× 1/2 + (1− α)× 1/4 = 1+α
4
.

By calculating the probability of each outcome in a compound lottery, we can reduce it
to an equivalent simple lottery, as shown on the right of Figure 1.2.

p

q

α

1− α

1
2

10

1
2 −10

1
4

10

3
4 −10

r

1 + α

4
10

3− α

4 −10

Figure 1.2: Compound lottery (left) and its reduced form (right).

We assume reduction of compound lotteries : individuals are indifferent between any
compound lottery and its reduced form—that is, any two lotteries that induce the same
probabilities over outcomes are treated as equivalent.

Can you think of reasons why someone might not be indifferent between a compound lot-
tery and its reduced form? Violations of reduction generate interesting phenomena studied in
behavioural economics. See, for example, Segal (1990) and Dillenberger & Raymond (2020).
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This lottery mixing operation would not make sense with an unstructured set of
outcomes. As an illustration, suppose the set of outcomes consists of fruits. We can
have an apple or a banana, but there is no fruit that is a mixture of an apple and a
banana. Imposing structure on the set of elements to be ranked is one of the key moves
in microeconomic theory. In fact, we will later assume that the set of outcomes is R, the
set of real numbers representing monetary outcomes, which allows us to say more than
we could with a generic set of outcomes.

There is another useful way to represent lotteries graphically. Consider again the coin
toss that yields 10 euros with probability 1/2 and −10 euros with probability 1/2. We can
represent this lottery as the midpoint of the line segment whose endpoints correspond
to the degenerate lotteries that yield 10 and −10 with probability 1; see panel (a) of
Figure 1.3. More generally, with n possible outcomes we can represent a lottery as a
point in an (n − 1)-dimensional simplex. For example, with three outcomes we can
represent lotteries as points in an equilateral triangle, as in panel (b).3 The vertices of
the triangle correspond to degenerate lotteries that yield one outcome with probability
1, while any other point in the triangle represents a lottery that yields each of the three
outcomes with some probability. Roughly speaking, the farther a point is from a vertex,
the lower the probability of the corresponding outcome. For example, the lottery p in
panel (b) yields outcome x with relatively high probability and outcomes y and z with
relatively low probabilities.

3That’s why the ∆ notation!
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10 −10

p(10) = p(−10) = 1
2

(a) Two outcomes

x

(1, 0, 0)

y

(0, 1, 0)

(0, 0, 1)

z

(
p(x), p(y), p(z)

)

(b) Three outcomes

Figure 1.3: Lotteries as points in simplexes: (a) a two–outcome lottery lies on a line
segment; (b) with three outcomes, lotteries lie in an equilateral triangle.

For a finite outcome set X, the probability simplex over X is

∆(X) =

{
p : X → [0, 1]

∣∣∣∣∣ ∑
x∈X

p(x) = 1

}
,

or equivalently, {(
p(x1), . . . , p(xn)

)
∈ Rn

∣∣∣∣∣ p(xi) ≥ 0,
∑
i

p(xi) = 1

}
.

This set is an (n− 1)-dimensional simplex whose vertices correspond to the degenerate lotteries
(unit vectors), e.g. (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

1.2 Preferences over lotteries

Our goal is to understand how individuals choose between lotteries, whether they like
or dislike risk, and how we can compare different individuals’ attitudes toward risk. To
do so, we need a way to express statements such as “an individual weakly prefers lottery
p to lottery q”. Introduce a binary relation ≿ over ∆(X), where p ≿ q reads “the
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individual weakly prefers lottery p to lottery q”.4 Contrary to choice under certainty,
we are now comparing lotteries—that is, probability distributions over outcomes—rather
than outcomes themselves.

Technically, ≿ is a subset of ∆(X)×∆(X): a set of ordered pairs of lotteries. For example,
if p, q ∈ ∆(X), the statement “p is (weakly) preferred to q” is equivalent to (p, q) ∈≿.

Recall that we can define strict preference and indifference in terms of weak preference.
We write p ≻ q, which reads “p is strictly preferred to q”, if and only if p ≿ q but not
q ≿ p; and we write p ∼ q, which reads “p is indifferent to q”, if and only if both p ≿ q

and q ≿ p.
In principle, we could describe the preference relation ≿ by listing, pair by pair,

which lotteries are weakly preferred to which others. However, that would be rather
inconvenient as a way to work with preferences. It is more practical to have a function
that assigns a number to each lottery, so that we can compare lotteries by comparing
their associated numbers. Such a function should “agree” with the preference relation ≿

in the sense that, if p is weakly preferred to q, then the number assigned to p should be
at least as large as the number assigned to q. This leads us to the notion of a utility
function representing preferences.

Definition 1.1. A utility function U : ∆(X) → R represents the preference relation ≿

over ∆(X) if, for all lotteries p, q,

p ≿ q ⇐⇒ U(p) ≥ U(q).

What would be a reasonable utility function representing preferences over lotteries?
A natural candidate is the expected utility function, defined as follows.

Definition 1.2. Preferences ≿ are represented by an expected utility function if there
exists a function u : X → R such that, for all lotteries p,

U(p) =
∑
x

p(x)u(x). (1.1)

In other words, an expected utility function assigns to each lottery p the expected
value of the function u over the outcomes, where the expectation is taken with respect to
the probability distribution p. The function u is sometimes called the Bernoulli utility
function. An expected utility function is linear in probabilities ; that is, for any lotteries
p, q and any α ∈ [0, 1],

U
(
αp+ (1− α)q

)
= αU(p) + (1− α)U(q),

4Are you curious why we use the symbol ≿ for preferences instead of ≥? The historian of economic
theory Ivan Boldyrev told me that it originates from Herstein & Milnor (1953), who used it in their
classic paper providing an axiomatic characterization of expected utility—which we will encounter soon.
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meaning that the expected utility of a mixture of lotteries is the weighted average of
their expected utilities. The other direction of the statement is also true: if U is linear,
then it is an expected utility function.5 Linearity is an extremely convenient property in
applications, which partially explains the success of expected utility theory.

Suppose you observe an individual’s choices and want to test whether their preferences
can be represented by an expected utility function. How might you do that? One idea
would be to design a choice task, predict the individual’s choices using Equation (1.1),
and see whether the predictions are accurate. However, this approach is hard to apply,
because to make predictions you would need to assume a specific function u. This is
sometimes done—certain functional forms work particularly well—but there is another
approach.

We can instead look for behavioural predictions that are independent of any specific
u; that is, properties of choices that any expected utility maximiser must satisfy. If we
can identify such properties, we can design a choice task aimed at testing whether the
individual’s choices satisfy them. Linearity of expected utility is one such property: it
holds regardless of the specific u, and it is the main behavioural prediction of expected
utility theory.

In the next lecture, we will examine properties that fully characterise preferences
representable by an expected utility function. In other words, violating these properties
implies that preferences cannot be represented by an expected utility function, while
satisfying them implies that they can be represented only by an expected utility function.
Such characterisations are remarkably powerful. We will also discuss a second point of
view on the role of these properties in defining a theory of choice.

Things to read. See Kreps (1988, pp. 31–33) for a brief, intuitive introduction to
the lottery model in this chapter. For a similar treatment in a standard textbook, see
Mas-Colell et al. (1995, pp. 168–170).

1.3 Exercises

Exercise 1.1. Can we still represent the set of lotteries and compound lotteries on the
simplex if individuals are not indifferent between a compound lottery and its reduced
form? Why or why not?

Solution to Exercise 1.1. If individuals are not indifferent between a compound lottery
and its reduced form, then one would need to study preferences over ∆(∆(X)), the set of
lotteries over lotteries. This set is different from ∆(X) itself, so the simplex representation
of lotteries would not work. A compound lottery, an element of ∆(∆(X)), cannot be
represented as a point in the simplex of ∆(X) because it is a different object.

5You are asked to prove this in Exercise 1.6.
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Exercise 1.2. Assume there are three outcomes x, y, z. Draw, in the simplex, the set of
lotteries that yield each outcome with the same probability and the lottery that yields
x with certainty. Now draw the set of all mixtures of these two lotteries. Assume that
the individual is indifferent between the lottery yielding each outcome with the same
probability, the lottery yielding x with certainty, and any mixture of the two. Which
part of the simplex does this indifference “curve” correspond to? Is it really a curve?

Exercise 1.3. Assuming three outcomes x, y, z, draw in the simplex the set of lotteries
that yield outcome x with probability at least 1/2.

Exercise 1.4. In the main text, we assumed that individuals are indifferent between a
compound lottery and its reduced form. State this indifference formally as a condition
on the preference relation ≿, you might need to develop the appropriate notation. If you
are stuck, check Jehle & Reny (2011, ch. 4).

Solution to Exercise 1.4. Let p, q ∈ ∆(X) be two lotteries, and let α ∈ [0, 1]. Consider
the compound lottery r = αp+ (1−α)q. As discussed in Exercise 1.1, r is an element of
∆(∆(X)). Let r′ be the reduced form of r, defined by r′(x) = αp(x) + (1−α)q(x) for all
x. One can identify r′ as an element of the set of compound lotteries ∆(∆(X)), it is a
“degenerate” compound lottery assigning probability 1 to a specific lottery. Preferences
≿ are then over ∆(∆(X)). Reduction of compound lotteries states that r ∼ r′; that is,
the individual is indifferent between the compound lottery and its reduced form.

Exercise 1.5. Show that preferences represented by an expected utility function satisfy
reduction of compound lotteries. It might be useful to use what you learned from Exercise
1.4.

Solution to Exercise 1.5. Let p, q ∈ ∆(X) be two lotteries, and let α ∈ [0, 1]. Consider
the compound lottery r = αp + (1 − α)q, and let r′ be its reduced form, defined by
r′(x) = αp(x) + (1 − α)q(x) for all x. We want to show that r ∼ r′, which is equivalent
to showing that U(r) = U(r′). By definition of expected utility,

U(r) =
∑
x

r(x)u(x).

However, since r is a compound lottery, we can express U(r) as follows:

U(r) = αU(p) + (1− α)U(q).

Substituting the definitions of U(p) and U(q), we have

U(r) = α
∑
x

p(x)u(x) + (1− α)
∑
x

q(x)u(x).

Combining the sums, we get
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U(r) =
∑
x

[αp(x) + (1− α)q(x)]u(x).

Notice that the term in brackets is exactly r′(x). Therefore,

U(r) =
∑
x

r′(x)u(x) = U(r′).

Exercise 1.6. Show that a function U is an expected utility function if and only if it is
linear in probabilities.

Solution to Exercise 1.6. Check Mas-Colell et al. (1995, Proposition 6.B.5, p. 173).

Exercise 1.7. An individual faces two choice problems. In the first problem, they choose
between receiving 50 euros for sure and a lottery that yields 250 euros with probability
0.10, 50 euros with probability 0.89, and 0 euros with probability 0.01. In the second
problem, they choose between two lotteries: the first yields 50 euros with probability 0.11

and 0 euros with probability 0.89; the second yields 250 euros with probability 0.10 and 0

euros with probability 0.90. Suppose that in the first problem the individual prefers the
sure amount to the lottery, while in the second they prefer the second lottery (yielding
250 euros with probability 0.10) to the first (yielding 50 euros with probability 0.11).
Assume the individual prefers having more money. Can these preferences be represented
by an expected utility function? Why or why not?

Solution to Exercise 1.7. Check Mas-Colell et al. (1995, Example 6.B.2, p. 179).
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Lecture 2

Expected utility theory

2.1 Assumptions on preferences

We now impose properties on preferences over lotteries and study their behavioural impli-
cations. But first, a brief methodological aside on what we are doing. Before discussing
properties of ≿, we should make explicit what the interpretation of ≿ is. Different
methodological stances are possible. Is ≿ tracking what an individual has in mind?
What he would say if asked? How he chose in the past?

Under revealed preference theory, we interpret ≿ as a description of how an individual
chooses. Therefore, there is no psychological content to ≿. Revealed preference theory
has been the standard methodological stance in economics for a long time. But why?
Wouldn’t it be better to develop a theory that exploits psychological insights?

Revealed preference theory is a methodological stance, not a psychological (or, for that
matter, a moral) one. The assumption is not that choices are unrelated to psychological
motives, but that we abstract from these motives and look for patterns in choices directly.
There is a strong advantage in doing so: psychological motives are hard to observe,
while choices can be observed easily. The implication is that a choice theory based
on revealed preferences is empirically testable: if we observe choices that violate the
theory’s assumptions, we can reject it. Therefore, revealed preference theory is not a
claim about how individuals make choices or about what drives them. On the contrary,
it is deliberately silent about these issues.1 This is often misunderstood: there is a
plethora of critics claiming that economics views individuals as cold robots.2

Such critics mostly come from behavioural economics, a field that aims to incorporate
psychological insights into economic models.3 Is it therefore impossible to do behavioural
economics within the revealed-preference framework? Not at all. Good behavioural
theories do what the name suggests: they characterise the behavioural content of a theory,
so that we, as economists, can understand how individuals behave. Two behavioural
theories with different psychological content but that are observationally equivalent—i.e.,
they make the same predictions about choices—have the same economic implications.4

1If you are interested, see Thoma (2021) for a discussion of the current status of revealed preference
theory and Moscati (2025) for the role of psychological narratives in choice theory.

2By the way, if you read Asimov’s books you know that robots are not cold at all!
3See Spiegler (2024) for an account of the motivations of the founding fathers of behavioural economics.
4There is a huge debate on this topic. Among many, I suggest reading Gul & Pesendorfer (2008) and
the reply by Camerer (2008). A more recent discussion is Spiegler (2019).
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An interesting case study is Masatlioglu & Raymond (2016), where the authors show that
the famous model by Köszegi & Rabin (2007) is behaviourally equivalent to the intersection
of rank-dependent utility and quadratic utility—two older models—despite having a different
psychological interpretation. Another example that is quite relevant today is in Eliaz & Spiegler
(2006).

In what follows, you can have in mind the interpretation of ≿ that you prefer, but
keep in mind that assumptions may have different flavours under different interpretations.
Recall that we want to find properties that single out expected utility preferences in
Equation (1.1). Therefore, it might be worthwhile to first understand some implications
of having expected utility preferences.

Having expected utility preferences over lotteries implies that indifference curves on
the simplex are straight lines. That is, say that if p ∼ q, then, for any α ∈ (0, 1), it holds
that αp+ (1− α)q ∼ p, as illustrated in Figure 2.1.

x

(1, 0, 0)

y

(0, 1, 0)

(0, 0, 1)

z

p q

αp+ (1− α)q

Figure 2.1: If p ∼ q, then any mixture of p and q is also indifferent to p and q.

Let’s show this formally. Assume that p ∼ q. Then, by the definition of expected
utility, we have

∑
x∈X

p(x)u(x) =
∑
x∈X

q(x)u(x).

Applying expected utility again, for any α ∈ (0, 1), the utility of the lottery αp+(1−
α)q is

13



∑
x∈X

(
αp(x) + (1− α)q(x)

)
u(x) =

∑
x∈X

αp(x)u(x) +
∑
x∈X

(1− α)q(x)u(x)

= α
∑
x∈X

p(x)u(x) + (1− α)
∑
x∈X

q(x)u(x)

= α
∑
x∈X

q(x)u(x) + (1− α)
∑
x∈X

q(x)u(x)

=
∑
x∈X

q(x)u(x).

Indifference curves are also parallel; you are asked to show this in Exercise 2.1. Of
course, the fact that indifference curves are straight lines is related to the linearity of
expected utility, which in turn follows from a specific axiom, as we will see shortly.

Let’s now turn to the properties of ≿ we will consider. First, we assume that prefer-
ences form a weak order.

Axiom 2.1. (Weak order) Preferences ≿ are complete and transitive.

Recall that preferences are complete if, for any two lotteries p, q, either p ≿ q or
q ≿ p, or both. They are transitive if, for any three lotteries p, q, r, whenever p ≿ q and
q ≿ r, then p ≿ r.

Sometimes Weak order is referred to as rationality of preferences (see e.g. Mas-Colell et
al. (1995, p. 6)). However, I think this is an unfortunate name. It suggests that it is “irrational”
to violate Weak order, but there are reasons why people might have intransitive or incomplete
preferences (can you think of any?). An interesting discussion on the relationship between
rationality and intelligence is in Myerson (1997, ch. 1).

Weak order is a necessary condition for having any utility representation (see Mas-
Colell et al. (1995, p. 9)). It is not the core assumption of expected utility theory, but
rather one shared by most theories of choice.

Axiom 2.2. (Continuity) For any three lotteries p, q, r, if p ≻ q ≻ r, then there exist
α, β ∈ (0, 1) such that αp+ (1− α)r ≻ q ≻ βp+ (1− β)r.

Continuity says that there is no lottery p so good that, for q ≻ r, a small probability
β of p and a large probability 1 − β of r is always better than q. Similarly, there is
no gamble r so bad that, for p ≻ q, a large probability α of p and a small probability
1− α of r is always worse than q. In essence, this axiom implies that preferences do not
have “jumps” when probabilities change slightly—i.e., that preferences are continuous
in probabilities. Continuity allows us to obtain a continuous utility representation of
preferences (see Mas-Colell et al. (1995, p. 47)), but again, it is not the core assumption
of expected utility theory—the next one is.
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Axiom 2.3. (Independence) For any three lotteries p, q, r and for any α ∈ (0, 1), we
have p ≿ q if and only if αp+ (1− α)r ≿ αq + (1− α)r.

In words, Independence says that if p is preferred to q, then mixing both lotteries with
any third lottery r, using the same probability 1−α, does not change their ranking. One
way to justify Independence is as follows. Suppose p ≿ q. Now consider two compound
lotteries obtained by tossing a coin: the first yields p if the coin shows heads and r

otherwise; the second yields q if the coin shows heads and r otherwise. Ex ante, one
might reason that what happens if the coin shows tails is the same in both compound
lotteries, so that part should not matter—while if the coin shows heads, p is preferred to
q. Therefore, the first compound lottery should be preferred to the second.

This argument relies on the meaning of the mixing operation within the set of lotteries.
By contrast, consider the case of mixing foods. One might prefer pasta to cake, yet mixing
both with whipped cream could make the cake better than the pasta.5 You are asked
in Exercise 2.2 to elaborate on the relation between Independence and the linearity of
indifference curves.

Before stating Theorem 2.1 in the next section, we need to prove a preliminary result.
Lemma 2.1 establishes that, under the assumptions introduced so far, there exist two
lotteries that are the best and the worst possible ones.

Lemma 2.1. Let ≿ satisfy Weak order and Independence. Then there exist two lotteries
p and p such that

p ≿ p ≿ p for all p.

Proof. The proof proceeds in two steps.

Step 1. By Weak order, the restriction of ≿ to the set of degenerate lotteries {δx ∈
∆(X) : δx(x) = 1} is a complete and transitive order on a finite set. Hence there exist
outcomes x∗, x∗ such that

δx∗ ≿ δx ≿ δx∗ for all x.

Fix p := δx∗ and p := δx∗ .

Step 2. For any lottery p, let supp(p) = {x ∈ X : p(x) > 0} and denote its size by
|supp(p)|. We prove by induction on k := |supp(p)| that

p ≿ p ≿ p.

Base case. If k = 1, then p = δx for some x, and the claim follows from Step 1.
Inductive step. Assume the statement holds for all lotteries whose support size is at

most k − 1. Let p have support size k ≥ 2. Pick any x ∈ supp(p) and write

p = α δx + (1− α) q, α := p(x) ∈ (0, 1),

5Feel no shame if you are unconvinced by this example.
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where q is the renormalized remainder, defined by

q(y) =


p(y)

1− α
if y ̸= x,

0 if y = x.

Then q ∈ ∆(X) and |supp(q)| ≤ k − 1.
By the inductive hypothesis, p ≿ q; and by Step 1, p ≿ δx. We apply Independence

twice. From p ≿ q, mix with p:

p = (1− α) p+ α p ≿ (1− α) q + α p = α p+ (1− α) q.

From p ≿ δx, mix with q:

α p+ (1− α) q ≿ α δx + (1− α) q = p.

By transitivity,
p ≿ p.

A symmetric argument yields p ≿ p. Indeed, by the inductive hypothesis q ≿ p and
by Step 1 δx ≿ p. Using Independence with the same reasoning gives

p = α δx + (1− α) q ≿ α p+ (1− α) q ≿ p.

Therefore, p ≿ p ≿ p for all lotteries with support size k, completing the induction.
The fixed degenerate lotteries p = δx∗ and p = δx∗ bound every p, as claimed.

2.2 Expected utility representation

We are ready to state and prove the theorem relating the properties of preferences over
lotteries to the expected utility functional form.

Theorem 2.1. Preferences over lotteries ≿ satisfy Weak order, Continuity, and Inde-
pendence if and only if there exists a utility function u : X → R such that

p ≿ q if and only if
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x) for all p, q. (2.1)

The proof essentially follows Mas-Colell et al. (1995, pp. 176–178), complemented by
intuition and figures.

Proof. We proceed by steps.
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Step 1. If p ≿ q, then p ≿ αp+ (1− α)q ≿ q for any α ∈ (0, 1).
The intuition behind this step is simple: if p is better than q, then any mixture of the

two is worse than p and better than q. Figure 2.2 illustrates the idea.

αp+ (1− α)q
p

q

Figure 2.2: Step 1.

This follows from Independence.

p ≿ q =⇒ (1− α) p+ α p ≿ (1− α) q + α p =⇒ p ≿ αp+ (1− α)q. (2.2)

p ≿ q =⇒ αp+ (1− α)q ≿ αq + (1− α)q =⇒ αp+ (1− α)q ≿ q. (2.3)

The conclusion follows from Equations (2.2) and (2.3).

Step 2. β > α if and only if βp+(1−β) p ≻ αp+(1−α) p, where p and p are the best
and worst lotteries identified in Lemma 2.1.

The idea of this step is as follows. From Step 1, we know that a mixture of p and
q, where p ≿ q, is worse than p and better than q. Now, since p is the best lottery
available, we have p ≻ αp + (1 − α) p. We want to show that βp + (1 − β) p can be
written as a mixture of p and αp+ (1− α) p; therefore, by Step 1, it must be preferred
to αp+ (1− α) p. The idea is illustrated in Figure 2.3.
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p

p

αp+ (1− α)p

βp+ (1− β)p

= γp+ (1− γ)[αp + (1− α)p]

Figure 2.3: Step 2.

We want to express βp+ (1− β) p as a mixture of p and αp+ (1− α) p. That is, we
look for some γ ∈ (0, 1) such that

βp+ (1− β) p = γp+ (1− γ)
[
αp+ (1− α) p

]
.

A short calculation shows that γ =
β − α

1− α
. By Step 1 we know that p ≻ αp+ (1− α) p;

therefore,
γp+ (1− γ)

[
αp+ (1− α) p

]
≻ αp+ (1− α) p.

Since βp+ (1− β) p = γp+ (1− γ)
[
αp+ (1− α) p

]
, the conclusion follows.

Up to this point we have proved that if β > α, then βp+ (1− β) p ≻ αp+ (1− α) p.
But the statement says “if and only if”, so we must also show the converse: if α ≥ β,
then it cannot be that βp + (1 − β) p ≻ αp + (1 − α) p. When β = α, the two lotteries
coincide and are therefore indifferent. The relevant case is α > β. By the argument
above, αp+ (1− α) p ≻ βp+ (1− β) p, and that completes the proof of this step.

Step 3. 6 For any p, there exists a unique αp ∈ [0, 1] such that p ∼ αpp+ (1− αp) p.
We can derive this step as a consequence of the previous ones together with Continuity.

This step involves some algebra, but you can get intuition from Figure 2.4.

6In this step we use a proof by contradiction. Before diving in, make sure you are familiar with the logic
of such proofs.
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p

p

αpp+ (1− αp)p

p p
′

αp′p+ (1− αp′)p

Figure 2.4: Step 3.

First, notice that if αp exists, it must be unique. Suppose there are two such numbers,
αp and α′

p, with αp > α′
p. Then, by Step 2, αpp+(1−αp) p ≻ α′

pp+(1−α′
p) p, contradicting

indifference to p.
Now we need to show that such an αp exists. If p ∼ p, then αp = 1 works; if p ∼ p,

then αp = 0 works. The interesting case is when p ≻ p ≻ p.
Define

αp = sup
{
α ∈ [0, 1] : p ≿ αp+ (1− α) p

}
. (2.4)

Since α = 0 belongs to this set, the supremum is well defined and the set is non-empty.
We now establish two auxiliary claims. The first is

If 1 ≥ α > αp, then αp+ (1− α) p ≻ p. (2.5)

Indeed, if p ≿ αp+(1−α) p held for such α, then αp would not satisfy Equation (2.4).
Moreover,

If 0 ≤ α < αp, then p ≻ αp+ (1− α) p. (2.6)

The reasoning is as follows. By the definition of αp, there exists some α′ such that
α < α′ ≤ αp and p ≿ α′p+ (1− α′) p. Since α < α′, Step 2 implies that

p ≻ α′p+ (1− α′) p ≻ αp+ (1− α) p.

Now, there are three possibilities to consider: αpp+(1−αp) p ≻ p, p ≻ αpp+(1−αp) p,
or indifference between them.

If αpp+ (1− αp) p ≻ p, then by Continuity there exists β ∈ (0, 1) such that

β
(
αpp+ (1− αp) p

)
+ (1− β) p ≻ p.
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Notice that

β
(
αpp+ (1− αp) p

)
+ (1− β) p = βαp p+ β(1− αp) p+ (1− β) p

= βαp p+
[
β(1− αp) + (1− β)

]
p

= βαp p+
(
1− βαp

)
p ≻ p.

Since βαp < αp, by Equation (2.6) we must have p ≻ βαp p+ (1− βαp) p, which is a
contradiction.

If instead p ≻ αpp+ (1− αp) p, then by Continuity there exists β ∈ (0, 1) such that

p ≻ β
(
αpp+ (1− αp) p

)
+ (1− β) p

=
[
βαp + (1− β)

]
p+ β(1− αp) p

=
(
1− β(1− αp)

)
p+ β(1− αp) p.

Since 1− β(1− αp) > αp, by Equation (2.5) we must have(
1− β(1− αp)

)
p+ β(1− αp) p ≻ p,

which is again a contradiction.

Step 4. Define a utility function U : ∆(X) → R that assigns to each lottery a number
representing its utility, defined by U(p) = αp. This function represents preferences ≿.

Take two lotteries p and p′. By Step 3, there exist unique αp and αp′ such that

p ∼ αpp+ (1− αp) p, p′ ∼ αp′p+ (1− αp′) p.

Therefore,
p ≿ p′ if and only if αpp+ (1− αp) p ≿ αp′p+ (1− αp′) p.

By Step 2,

αpp+ (1− αp) p ≿ αp′p+ (1− αp′) p if and only if αp ≥ αp′ .

The last condition holds if and only if U(p) ≥ U(p′), which proves the claim.

Step 5. The function U is linear and therefore, by Exercise 1.6, has the expected utility
form.

From the previous steps we know that, for any lottery p, there is a unique number
U(p) ∈ [0, 1] such that

p ∼ U(p) p+
(
1− U(p)

)
p, p′ ∼ U(p′) p+

(
1− U(p′)

)
p.

Applying Independence, we get

βp+ (1− β)p′ ∼ β
[
U(p) p+

(
1− U(p)

)
p
]
+ (1− β)p′

∼ β
[
U(p) p+

(
1− U(p)

)
p
]
+ (1− β)

[
U(p′) p+

(
1− U(p′)

)
p
]

=
[
βU(p) + (1− β)U(p′)

]
p+

(
1−

[
βU(p) + (1− β)U(p′)

])
p.
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Let γ := βU(p) + (1 − β)U(p′). By Step 4, for the lottery βp + (1 − β)p′ there is a
unique number γ such that βp+ (1− β)p′ ∼ γ p+ (1− γ) p. Therefore,

U(βp+ (1− β)p′) = βU(p) + (1− β)U(p′).

Recall that a functional representation of preferences need not be unique: multiple
functions can represent the same preferences. However, for expected utility representa-
tions we have a very specific characterization of all possible representations, as stated in
the following corollary.

Corollary 2.1. Suppose U is an expected utility representation of ≿. Then Ũ : ∆(X) →
R is another expected utility representation of ≿ if and only if there exist β > 0 and γ ∈ R
such that

Ũ(p) = β U(p) + γ for all p. (2.7)

Proof. First, suppose that Equation (2.7) holds. Then Ũ is an expected utility represen-
tation of ≿. Assume Ũ = βU + γ with β > 0. Then

Ũ(p) = β
∑
x

p(x)u(x) + γ =
∑
x

p(x)
[
βu(x) + γ

]
.

Hence, Ũ has the expected utility form with ũ(x) := βu(x) + γ. Since β > 0, it follows
that p ≿ q ⇐⇒ U(p) ≥ U(q) ⇐⇒ Ũ(p) ≥ Ũ(q).

Second, suppose that U and Ũ are both expected utility representations of the same
≿. Then they must be related by an affine transformation as in Equation (2.7). By
Lemma 2.1, there exist p, p such that p ≻ p and p ≿ p ≿ p for all p. For any lottery p,
define αp ∈ [0, 1] by

U(p) = αpU(p) + (1− αp)U(p), so that αp =
U(p)− U(p)

U(p)− U(p)
.

Applying the same construction to Ũ and using the same αp (since both functions
represent the same preferences), we obtain

Ũ(p) = αpŨ(p) + (1− αp) Ũ(p) = Ũ(p) +
Ũ(p)− Ũ(p)

U(p)− U(p)

[
U(p)− U(p)

]
.

Rearranging yields the affine relation

Ũ(p) = β U(p) + γ for all p,

where

β :=
Ũ(p)− Ũ(p)

U(p)− U(p)
> 0, γ := Ũ(p)− β U(p).

Positivity of β follows because p ≻ p implies U(p) > U(p) and Ũ(p) > Ũ(p).
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In Exercise 2.7, you are asked to elaborate on the significance of Corollary 2.1 for
interpreting utility numbers as cardinal representations of preferences.7

Things to read. For a textbook treatment of the material covered in this lecture,
see Mas-Colell et al. (1995, pp. 170–178). Theorem 2.1 is known as the von Neu-
mann–Morgenstern representation theorem, after von Neumann & Morgenstern (2007),
and it has enormous historical importance. An excellent discussion of the historical con-
text and significance of expected utility theory can be found in Moscati (2018).

2.3 Exercises

Exercise 2.1. Show that if preferences are represented by an expected utility function,
then indifference curves in the triangle are parallel lines.

Solution to Exercise 2.1. Check Mas-Colell et al. (1995, p. 175).

Exercise 2.2. Explain why the fact that indifference curves are straight and parallel
lines follows from Independence. I.e., use the axiom, not the functional form!

Solution to Exercise 2.2. Check Mas-Colell et al. (1995, p. 175-176).

Exercise 2.3. Prove the direction of Theorem 2.1 that we did not prove in class. Show
that if U represents ≿, then ≿ satisfies Weak order, Continuity, and Independence. (It
is not difficult, I promise!)

Solution to Exercise 2.3. Weak order. Since R with the usual order is a weak order, and
U represents ≿, it follows that ≿ is a weak order.

Continuity. Take three lotteries p, q, r such that p ≿ q ≿ r. Then,

U(p) ≥ U(q) ≥ U(r).

Since U is an expected utility function, it is continuous (as a function from a finite-
dimensional Euclidean space to R). Therefore, for any sequence of lotteries (qn)

∞
n=1 con-

verging to q, we have
lim
n→∞

U(qn) = U(q).

If qn → q and p ≿ qn for all n, then

U(p) ≥ U(qn) → U(q),

implying p ≿ q. A similar argument shows the other part of Continuity.

7If you are interested in this aspect, you may read von Neumann & Morgenstern (2007, ch. 3). An
illuminating discussion of measurement in the social sciences is in Krantz et al. (1971, ch. 1).
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Independence. Take three lotteries p, q, r such that p ≿ q and any α ∈ (0, 1). Then,

U(p) ≥ U(q).

Since U is an expected utility function, we have

U(αp+ (1− α)r) = αU(p) + (1− α)U(r), U(αq + (1− α)r) = αU(q) + (1− α)U(r).

It follows that
U(αp+ (1− α)r) ≥ U(αq + (1− α)r).

Since U represents ≿, this implies

αp+ (1− α)r ≿ αq + (1− α)r,

which is exactly Independence.

Exercise 2.4. Revisit the choice problem in Exercise 1.7. Show that the preferences
exhibited there do not satisfy Independence. Representing the lotteries in a table might
help.

Solution to Exercise 2.4. Check Mas-Colell et al. (1995, p. 179-180).

Exercise 2.5. Consider the Betweenness Axiom introduced by Dekel (1986): for all
lotteries p, q and α ∈ [0, 1], if p ∼ q, then αp+(1−α)q ∼ p. Show that Independence im-
plies Betweenness, but Betweenness does not imply Independence. (Hint: for the second
part, construct a preference relation that satisfies Betweenness but not Independence,
maybe in the graph.) Are indifference curves still linear under Betweenness? Are they
parallel?

Solution to Exercise 2.5. Independence implies Betweenness. Take any lotteries p, q such
that p ∼ q and any α ∈ [0, 1]. By Independence,

αp+ (1− α)q ∼ αp+ (1− α)p = p.

Betweenness does not imply Independence. Consider the following preference relation
over the triangle with vertices x, y, z:

• All lotteries on the line segment between x and y are indifferent to each other.

• All lotteries on the line segment between y and z are indifferent to each other.

• All lotteries on the line segment between z and x are indifferent to each other.

• Any lottery on one side of the triangle is strictly preferred to any lottery on the
other side of the triangle.
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This preference relation satisfies Betweenness but not Independence. For example, take
p on the line segment between x and y, and q on the line segment between y and z, so
that p ∼ q. Now take r = z. Then, for any α ∈ (0, 1),

αp+ (1− α)r ≻ αq + (1− α)r,

showing that Independence fails.
Under Betweenness, indifference curves are still linear, but they need not be parallel.

Exercise 2.6. Show that the choices of the individual in Exercise 1.7 are compatible
with Betweenness. (Hint: drawing a picture might help.)

Exercise 2.7. Explain why Corollary 2.1 allows us to make statements such as “the
difference in utility between lottery p and lottery q is greater than the difference in utility
between lottery r and lottery s”. Why this would not be possible without Corollary 2.1?

Solution to Exercise 2.7. Corollary 2.1 states that any two expected utility representa-
tions of the same preference relation are related by an affine transformation. Therefore,
if U and Ũ are two expected utility representations of the same preferences, then for any
lotteries p, q, r, s,

U(p)− U(q) > U(r)− U(s) if and only if Ũ(p)− Ũ(q) > Ũ(r)− Ũ(s).

This is because
Ũ(p)− Ũ(q) = β U(p) + γ −

(
β U(q) + γ

)
= β

[
U(p)− U(q)

]
,

and similarly for r and s. Since β > 0, the inequalities are preserved.
Without Corollary 2.1, we could not guarantee that differences in utility values are

meaningful across different expected utility representations. Different representations
could yield different rankings of differences in utility, making such statements ambiguous.
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Lecture 3

Money lotteries

3.1 Structuring the set of outcomes

In the previous section, we studied preferences with the expected utility form over lotteries
on a finite outcome set X. We now study a setting where the outcome set is the set of real
numbers R, representing monetary outcomes. This setting is particularly important in
economics and finance, as it allows us to model decisions such as investments, insurance,
and consumption.

You may wonder whether a form of Theorem 2.1 extends to this setting. The answer is yes,
see Kreps (1988, pp. 59–78) or Fishburn (1970, ch. 10).

Since the outcome set is now infinite, we should be careful about how we define
lotteries. We will use cumulative distribution functions (CDFs) to represent lotteries
over monetary outcomes. A CDF F : R → [0, 1] maps each monetary outcome x to the
probability that the outcome is less than or equal to x. It satisfies:

• F is nondecreasing, i.e. if x ≤ y, then F (x) ≤ F (y).

• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

• F is right–continuous, i.e. for every x ∈ R, limy↓x F (y) = F (x).1

Example 3.1. Consider a lottery that pays 1 dollar with probability 1
4
, 4 dollars with

probability 1
2
, and 6 dollars with probability 1

4
. The corresponding CDF F is

F (x) =


0 if x < 1,

1
4

if 1 ≤ x < 4,

3
4

if 4 ≤ x < 6,

1 if x ≥ 6,

and it is represented in Figure 3.1.

1The notation y ↓ x means that y approaches x from above.
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x

F ( · )

1
4

3
4

1

1 dollar 4 dollars 6 dollars

F (·)

Figure 3.1: Cumulative distribution function (CDF) representing a lottery over monetary
outcomes.

■

A second approach to studying lotteries over R is via simple probability distributions, i.e.
probability distributions that assign positive probability to only a finite number of outcomes.

Notice that mixtures of CDFs are also CDFs, so we can employ the same mixture
operation defined in Section 1.1. In particular, given two CDFs F and G, and α ∈ [0, 1],
the mixture H = αF + (1− α)G is also a CDF, where H(x) = αF (x) + (1− α)G(x) for
all x.

We now define preferences ≿ over the set of CDFs on R that have the expected utility
form. The idea is the same as before: we weight the utility of each monetary outcome
by its probability and sum these weighted utilities to obtain the expected utility of the
lottery. A preference relation ≿ over the set of CDFs has the expected utility form if
there exists a utility function u : R → R such that for any two CDFs F and G,

F ≿ G ⇐⇒
∫

u(x) dF (x) ≥
∫

u(x) dG(x).

Earlier, the Bernoulli utility was defined on a finite X as u : X → R; now the outcome
set is R, hence the domain differs. This lets us impose properties of u that are specific
to monetary outcomes. From now on we assume the following two.

Definition 3.1. The utility function u is increasing if for any x, y with x > y, we have
u(x) > u(y).

Definition 3.1 captures the idea that more money is preferred to less. When the
outcome set was a generic X, the inequality x > y had no meaning.2

2For instance, if x is an apple and y is a banana, what would x > y even mean?
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Definition 3.2. The utility function u : R → R is continuous if for any x and any
ε > 0, there exists δ > 0 such that for all y with |x− y| < δ, we have |u(x)− u(y)| < ε.

Definition 3.2 ensures that small changes in money lead to small changes in the
Bernoulli utility u. This could not be stated with a generic outcome set, where ex-
pressions like x− y are undefined.

Definition 3.2 is continuity in money. What about continuity in probabilities?

3.2 Risk aversion

We now have the tools to define and discuss risk aversion. Defining this concept allows
us to answer questions such as: does an individual dislike risk? how much? As we will
see in the next Lecture, the answer has important implications for economic behaviour.

The definition of risk aversion is quite intuitive. Consider the following choice: receive
5 euros for sure, or take a lottery that pays 0 euros with probability 0.5 and 10 euros
with probability 0.5. Both options have the same expected monetary value, 5 euros. If
the individual prefers the certain 5 to the lottery, he dislikes risk—he prefers getting the
mean outcome for sure rather than facing uncertainty. If instead he prefers the lottery,
he likes risk—he is willing to face uncertainty for the chance of a higher payoff.

Did you notice what we just did? We needed to develop a definition of an intuitive, but
ex-ante vague concept, risk aversion. We did it by developing a simple thought experiment that
“keeps everything fixed” except for the presence of risk. These thought experiments are very
useful to develop effective definitions.

For a general lottery, we say an individual is risk averse if he prefers the certain amount
equal to the lottery’s expected value to the lottery itself. For a CDF F , the expected
value is ∫

x dF (x). (3.1)

Evaluating money through u, the certain amount equal to that expected value yields
utility

u

(∫
x dF (x)

)
, (3.2)

whereas the lottery yields expected utility∫
u(x) dF (x). (3.3)
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Definition 3.3. An individual with expected utility preferences and Bernoulli utility u is
risk averse if for each CDF F ,

u

(∫
x dF (x)

)
≥

∫
u(x) dF (x). (3.4)

If u is not increasing (Definition 3.1), Definition 3.3 loses its intended meaning.

Inequality (3.4) is precisely Jensen’s inequality and is equivalent to the concavity of
u. Thus, the intuitive notion of risk aversion is equivalent to concavity of u. If u is twice
differentiable, concavity means u′′(x) ≤ 0 for all x; see Figure 3.2.

10
x

u(10)

0 5

u(5)

1
2
u(0) + 1

2
u(10)

c

Figure 3.2: Example of a concave u.

Analogously, an individual is risk loving if (3.4) is reversed, and risk neutral if it holds
with equality.

There are other, equivalent ways to define risk aversion. This is good news: it means
the definition is robust. One convenient route is via the certainty equivalent—the sure
amount of money that makes the individual indifferent to the lottery.

Definition 3.4. The certainty equivalent of a lottery with CDF F for an individual
with utility u is the number c(F, u) solving

u
(
c(F, u)

)
=

∫
u(x) dF (x). (3.5)

As an illustration, the certainty equivalent of the lottery paying 0 with probability
1/2 and 10 with probability 1/2 in Figure 3.2 is c.
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Intuitively, if an individual is risk averse, his certainty equivalent must be less than
the expected value of the lottery, as he prefers receiving the expected value for sure rather
than facing the lottery. To capture this intuition we can define the risk premium of
a lottery as the difference between the expected value of the lottery and its certainty
equivalent.

Definition 3.5. The risk premium of a lottery with CDF F for utility u is

π(F, u) =

∫
x dF (x)− c(F, u). (3.6)

You will show in Exercise 3.3 that an individual is risk averse if and only if the risk
premium is nonnegative for every lottery.

We now have a notion of risk aversion, but not a way to compare the risk attitudes
of two individuals. Again, we start from intuition, how could we compare two risk
averse individuals? The risk premium might be a starting point, the higher the risk
premium, the more risk averse the individual, as he requires a lower certainty equivalent
to face the lottery. Consider two individuals with utility function u and v. If for each
lottery F , the risk premium of the first individual is higher than that of the second, i.e.
π(F, u) ≥ π(F, v), we can say that the first individual is more risk averse than the second.
However, such condition boils down to comparing certainty equivalents:

π(F, u) ≥ π(F, v) ⇐⇒ c(F, u) ≤ c(F, v),

you should show this. We therefore have the following definition.

Definition 3.6. An individual with utility u is more risk averse than one with utility
v if, for every lottery F ,

c(F, u) ≤ c(F, v).

We now want to develop a measure of risk aversion that is related to the rate at
which the certainty equivalent changes as we change the lottery. Consider a lottery over
monetary outcomes that pays x+ ε with probability 1/2 and x− ε with probability 1/2,
call it Fε. By Definition 3.4

u
(
c(Fε, u)

)
= 1

2
u(x+ ε) + 1

2
u(x− ε). (3.7)

Since both sides of Equation (3.7) are twice differentiable in ε and u′(c(Fε, u)) > 0 since
u is increasing, the implicit function theorem implies that c(Fε, u) is twice differentiable
in a neighborhood of 0. Differentiating (3.7) with respect to ε gives

u′(c(Fε, u)
)
c′(ε) = 1

2
u′(x+ ε)− 1

2
u′(x− ε).

Evaluating at ε = 0,

u′(x) c′(0) = 0 =⇒ c′(0) = 0, c(0) = x.
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Differentiating again with respect to ε,

u′′(c(Fε, u)
)(
c′(ε)

)2
+ u′(c(Fε, u)

)
c′′(ε) = 1

2
u′′(x+ ε) + 1

2
u′′(x− ε).

Evaluating at ε = 0 and using c′(0) = 0 and c(0) = x, we obtain

u′(x)c′′(0) = u′′(x) =⇒ c′′(0) =
u′′(x)

u′(x)
.

The ratio between the second and first derivative of the utility function is the Arrow-
Pratt coefficient of absolute risk aversion. It is not by chance that it appears here.
As we noticed already, risk aversion is related to the concavity of the utility function,
which is captured by its second derivative. In principle we could use the second derivative
alone as a measure of risk aversion, but this would not be satisfactory, as multiplying the
utility function by a positive constant would change the second derivative but not risk
aversion. Dividing the second derivative by the first derivative solves this problem, as
multiplying the utility function by a positive constant multiplies both derivatives by the
same constant, leaving their ratio unchanged.

Definition 3.7. The Arrow-Pratt coefficient of absolute risk aversion for an in-
dividual with utility function u at outcome x is

r(x, u) = −u′′(x)

u′(x)
.

Hence, we just showed that the limit of the second derivative of the certainty equivalent
as ε → 0 is exactly −r(x, u). You should notice that, if u is increasing and concave, then
r(x, u) is positive. In the exercises, you are asked to show the following equivalence
between certainty equivalents and the Arrow-Pratt coefficient.

Proposition 3.1. An individual with utility u is more risk averse than an individual
with utility v if and only if, for each x,

r(x, u) ≥ r(x, v).

You should notice that, “more risk averse then” is a partial order on the set of utility
functions, it is not complete. There might be two utility functions u and v such that
neither u is more risk averse than v, nor v is more risk averse than u. This happens when
the Arrow-Pratt coefficients cross, i.e. there exist x and y such that r(x, u) > r(x, v) and
r(y, u) < r(y, v).

Things to read. This section mostly draws from Mas-Colell et al. (1995, ch. 6.C.).
Alternatives treatments can be found in Kreps (1988, ch. 6) and Kreps (2013, ch. 6).
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3.3 Exercises

Exercise 3.1. Check that the CDF in Figure 3.1 satisfies the three properties of a CDF.

Exercise 3.2. Write the condition for having preferences increasing in money in terms
of the binary relation ≿ over CDFs. Show that such condition implies that the Bernoulli
utility u is increasing.

Solution to Exercise 3.2. Preferences are increasing in money if for any two CDFs F and
G such that F (x) ≤ G(x) for all x with strict inequality for some x, we have F ≻ G.
To show that this implies that u is increasing, consider two monetary outcomes x > y

and the corresponding degenerate CDFs Fx and Fy that assign probability 1 to x and y,
respectively. Since x > y, we have Fx(z) ≤ Fy(z) for all z, with strict inequality at z = x.
By the assumption of increasing preferences, it follows that Fx ≻ Fy. According to the
expected utility representation, this means:∫

u(z) dFx(z) >

∫
u(z) dFy(z),

which simplifies to:
u(x) > u(y).

Hence, we conclude that the Bernoulli utility function u is increasing.

Exercise 3.3. Show that, if an individual with expected utility preferences and utility u

is risk averse, his risk premium is nonnegative for each lottery.

Solution to Exercise 3.3. By Definition 3.3, an individual is risk averse if for every CDF
F ,

u

(∫
x dF (x)

)
≥

∫
u(x) dF (x).

Let c(F, u) be the certainty equivalent of the lottery with CDF F . By Definition 3.4, we
have:

u
(
c(F, u)

)
=

∫
u(x) dF (x).

Combining these two equations, we get:

u

(∫
x dF (x)

)
≥ u

(
c(F, u)

)
.

Since u is increasing (by Definition 3.1), we can apply the monotonicity property of u to
the above inequality, yielding: ∫

x dF (x) ≥ c(F, u).

Rearranging this gives us the risk premium:

π(F, u) =

∫
x dF (x)− c(F, u) ≥ 0.

Hence, we conclude that if an individual is risk averse, his risk premium is nonnegative
for every lottery.
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Exercise 3.4. We noted that risk aversion is linked to concavity. Can you define “more
risk averse than” directly via concavity? Define when a function is “more concave than”
another, and show that your notion is equivalent to Definition 3.6. (Hint: it is easiest to
go via the Arrow–Pratt coefficient.)

Solution to Exercise 3.4. Check Mas-Colell et al. (1995, p. 190).

Exercise 3.5. Prove Proposition 3.1. (If you are stuck, check exercises 6.C.6 and 6.C.7
in Mas-Colell et al. (1995).)

Solution to Exercise 3.5. To prove Proposition 3.1, we need to show that an individual
with utility u is more risk averse than an individual with utility v if and only if, for each
x,

r(x, u) ≥ r(x, v),

where r(x, u) = −u′′(x)
u′(x)

and r(x, v) = −v′′(x)
v′(x)

.
(⇒) Assume that the individual with utility u is more risk averse than the individual

with utility v. By Definition 3.6, this means that for every lottery F ,

c(F, u) ≤ c(F, v).

Consider a small perturbation of a lottery around a certain outcome x. Specifically,
consider the lottery Fε that pays x + ε with probability 1/2 and x − ε with probability
1/2. The certainty equivalents for this lottery are given by:

u
(
c(Fε, u)

)
= 1

2
u(x+ ε) + 1

2
u(x− ε),

and
v
(
c(Fε, v)

)
= 1

2
v(x+ ε) + 1

2
v(x− ε).

Differentiating both sides with respect to ε and evaluating at ε = 0, we find that:

c′′(0, u) = −u′′(x)

u′(x)
, c′′(0, v) = −v′′(x)

v′(x)
.

Since c(Fε, u) ≤ c(Fε, v), it follows that:

c′′(0, u) ≤ c′′(0, v),

implying that:

−u′′(x)

u′(x)
≥ −v′′(x)

v′(x)
,

which gives us r(x, u) ≥ r(x, v).
(⇐) Now, assume that for each x,

r(x, u) ≥ r(x, v).
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We need to show that for every lottery F ,

c(F, u) ≤ c(F, v).

Consider again the lottery Fε defined above. Using the same differentiation process, we
find that:

c′′(0, u) = −u′′(x)

u′(x)
, c′′(0, v) = −v′′(x)

v′(x)
.

Since r(x, u) ≥ r(x, v), it follows that:

c′′(0, u) ≤ c′′(0, v).

Integrating this inequality twice with respect to ε and using the fact that c(0, u) =

c(0, v) = x and c′(0, u) = c′(0, v) = 0, we conclude that:

c(Fε, u) ≤ c(Fε, v).

Since this holds for any small perturbation ε, it extends to all lotteries F . Thus, we
have shown that the individual with utility u is more risk averse than the individual with
utility v.

Exercise 3.6. A specific utility function that is often used in economics and finance
is the exponential utility function, defined as u(x) = 1 − e−αx, where α > 0 is a
parameter. Such function has an interesting property related to how it handles risk. Can
you find it? Can you elaborate on what this property implies for risk taking at different
wealth levels?

Solution to Exercise 3.6. To analyze the properties of the exponential utility function
u(x) = 1− e−αx, we first compute its first and second derivatives:

u′(x) = αe−αx,

u′′(x) = −α2e−αx.

Next, we calculate the Arrow-Pratt coefficient of absolute risk aversion:

r(x, u) = −u′′(x)

u′(x)
= −−α2e−αx

αe−αx
= α.

This result shows that the Arrow-Pratt coefficient of absolute risk aversion r(x, u) is
constant and equal to α, regardless of the wealth level x.

The implication of this property is that individuals with exponential utility exhibit
constant absolute risk aversion (CARA). This means that their willingness to take
risks does not change with their wealth level. In other words, an individual with expo-
nential utility will require the same risk premium to accept a risky lottery, regardless of
whether they are wealthy or poor.
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Lecture 4

Stochastic dominance and applications

4.1 Stochastic dominance

In Lecture 3, we developed an analysis of properties of expected utility preferences. How-
ever, we have not yet discussed relevant properties of lotteries, which is what we do
now.

To start, one might want to have a language to say that a “lottery yields higher returns
than another one”. A simple way of capturing this idea is the following: an individual
with expected utility preferences should prefer lottery F to lottery G for any possibile
utility function u. This is first-order stochastic dominance.

Definition 4.1. The lottery F first-order stochastically dominates G if∫
u(x)dF (x) ≥

∫
u(x)dG(x) for every nondecreasing u. (4.1)

There is a second way of capturing the idea: for each given return, the probability of
getting at least that return is higher in one lottery than in the other one. That is, for each
return x, if F (x) ≤ G(x), then the probability of getting at least x is higher in lottery F

than in lottery G, because the probability of getting at least x in lottery F is 1− F (x).
The two criteria (4.1) and F (x) ≤ G(x) are equivalent, as stated by the following result.

Proposition 4.1. Lottery F first-order stochastically dominates lottery G if and only if
F (x) ≤ G(x).

You are asked to prove one direction of Proposition 4.1 in Exercise 4.1. As illustrated
in Figure 4.1, lottery F first-order stochastically dominates lottery G if its graph is always
below the graph of lottery G.
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Figure 4.1: Lottery F first-order stochastically dominates lottery G.

Notice that first-order stochastic dominance is an incomplete ordering over lotteries:
there are pairs of lotteries F,G such that neither F first-order stochastically dominates
G nor G first-order stochastically dominates F .

First order stochastic dominance is a comparison of returns. We now develop a notion
allowing us to compare riskiness. Again, we start from an intuitive idea: say that two
lotteries have the same expected return, but a risk averter prefers one lottery to the other.
Since the individual is risk averse, she must be preferring the less risky lottery. In this
case, we say that the first lottery second-order stochastically dominates the second one.

Definition 4.2. The lottery F second-order stochastically dominates G with the
same mean if∫

u(x)dF (x) ≥
∫

u(x)dG(x) for every nondecreasing concave u.

Recall that if an expected utility maximiser has a concave utility function, he is risk
averse, which explains the qualifier in Definition 4.2.

There is a second intuitive way of defining second-order stochastic dominance using the
concept of a mean preserving spread. Consider the following compound lottery. First, an
outcome x is drawn according to a distribution F . Then, to the realisation x, an amount
z, distributed according to a distribution with mean zero, is added. The resulting lottery
has the same mean as F but is more spread out, hence riskier. Such a lottery is called a
mean preserving spread of F . If a lottery G can be constructed in this way from lottery
F , we say that G is a mean preserving spread of F . We have the following result.

Proposition 4.2. If two distributions F have the same mean G, then F second-order
stochastically dominates G if and only if G is a mean preserving spread of F .
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4.2 Applications

We conclude our treatment of (objective) expected utility theory with two applications
of the concepts developed so far: insurance and investment in a risky asset.

Insurance. Consider an expected utility maximiser with initial wealth w > 0 who faces
a possible loss D > 0. The loss occurs with probability π ∈ (0, 1) and does not occur
with probability 1−π. It is possible to buy insurance: one unit of insurance costs q euros
for sure and pays 1 euro if the loss occurs.

If the individual buys α ≥ 0 units of insurance, his decision problem is

max
α≥0

{
(1− π)u(w − αq) + π u(w −D − αq + α)

}
. (4.2)

Assume an interior optimum α∗ > 0. Differentiating Equation (4.2) with respect to
α gives

(1− π)u′(w − αq)(−q) + π u′(w −D − αq + α) (1− q),

so α∗ satisfies

(1− π)u′(w − α∗q)(−q) + π u′(w −D − α∗q + α∗) (1− q) = 0.

If the individual is risk neutral, and therefore u is linear, the individual maximises
expected wealth:

w − πD + α(π − q).

The solution depends on the relationship between the insurance price q and the prob-
ability π:

• If π = q, then π − q = 0 and expected wealth

w − πD

is constant in α. Expected wealth is the same for every α, so the decision maker is
indifferent over all insurance levels.

• If π < q, then the slope π − q < 0, so expected wealth

w − πD + α(π − q)

is strictly decreasing in α. Expected wealth is maximised by choosing no insurance,
α∗ = 0.

If the individual is risk averse, and therefore u is strictly concave, then:
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• With fair insurance, q = π, expected wealth does not depend on α, but full insur-
ance, α = D, makes wealth non-random, as it is w − πD in both states. A strictly
risk-averse individual strictly prefers this certainty and chooses full insurance. You
are asked to verify this claim in Exercise 4.4.

• With q > π, expected wealth decreases in α, but insurance reduces risk. A strictly
risk-averse decision maker may still choose a strictly positive but finite α∗, charac-
terised by the first-order condition above.

Risky asset Consider an investor with expected utility preferences and initial wealth
w > 0. There are two assets: a safe asset with sure return 1 per euro invested; a risky
asset with random return z per euro invested, with distribution F and∫

z dF (z) > 1, (4.3)

so that the risky asset has higher expected return than the safe asset.
Let α denote the amount invested in the risky asset and β the amount invested in the

safe asset. The budget constraint is

α + β = w, α, β ≥ 0.

For any realization z, final wealth is

αz + β.

Using the budget constraint β = w − α, we can rewrite wealth as

αz + (w − α) = w + α(z − 1).

We now use the expectation notation E, omitting the CDF F for simplicity. The
investor’s problem is thus

max
0≤α≤w

E
[
u
(
w + α(z − 1)

)]
. (4.4)

Suppose the optimum is interior, α∗ ∈ (0, w). Then the first-order condition for α∗ is

E
[
u′(w + α∗(z − 1)

)
(z − 1)

]
= 0.

Notice that this condition resembles the one we obtained for insurance. In each case,
the individual trades off marginal utility in different states weighted by the “per-unit
payoff difference” in that state.

If the individual is risk neutral and therefore u is linear, then u′ is constant and the
condition reduces to

E[z − 1] = 0.
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Since E[z] > 1 by Equation (4.3), E[z− 1] > 0, so the derivative of expected utility is
positive for all α and the optimum is a corner: α∗ = w, all wealth is invested in the risky
asset.

If instead u is strictly concave, then u′ is decreasing, so high-z states, where wealth is
high, are given less weight and low-z states are given more weight. The higher expected
return of the risky asset is traded off against the disutility of risk, and this typically yields
an interior solution 0 < α∗ < w.

If u is twice differentiable and strictly concave, then the second derivative of expected
utility with respect to α is

E
[
u′′(w + α(z − 1)

)
(z − 1)2

]
< 0,

since (z − 1)2 ≥ 0 and u′′ < 0. Hence expected utility is strictly concave in α, so any
solution to the first-order condition is the unique global maximizer.

Evaluating the derivative at α = 0 gives

E
[
u′(w)(z − 1)

]
= u′(w)E[z − 1].

If E[z] > 1, then E[z−1] > 0, so the derivative at α = 0 is positive and the individual
strictly prefers to hold a positive amount of the risky asset.

From the condition

E
[
u′(w + α∗(z − 1)

)
(z − 1)

]
= 0,

one could argue that the optimal risky position α∗ decreases if the individual becomes
more risk averse. That is, u becomes more concave, so bad states are weighted more
heavily through u′. The moral of the story is: if a risk is actuarially favourable, a risk-
averse individual will invest in it, but the more risk averse she is, the less she will invest.

Things to read. Most of this lecture draws from Mas-Colell et al. (1995, ch. 6.D.),
you can find an alternative treatment in Kreps (2013, ch. 6.3).

4.3 Exercises

Exercise 4.1. Prove one direction of Proposition 4.1: show that if F first-order stochas-
tically dominates G in the sense of Definition 4.1, then F (x) ≤ G(x). (check Mas-Colell
et al. (1995, p. 195) if you are stuck)

Exercise 4.2. There is another way of defining first-order stochastic dominance. Con-
sider the following compound lottery. First, an outcome x is drawn according to a distri-
bution F . Then, to the realisation x, an amount z, distributed according to G, is added.
Show that such a compound lottery first-order stochastically dominates F . The reserve
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also hold: if F first-order stochastically dominates G, then F can be constructed as a
compound lottery as above!

Solution to Exercise 4.2. Check Mas-Colell et al. (1995, Example 6.D.1, p. 196).

Exercise 4.3. Prove one direction of Proposition 4.2, if G is a mean preserving spread
of F , then F second-order stochastically dominates G. (check Mas-Colell et al. (1995, p.
197) if you are stuck)

Exercise 4.4. Consider the insurance problem in Equation (4.2) with fair insurance,
q = π. Show that full insurance, α = D, is optimal for a risk-averse individual.

Solution to Exercise 4.4. Check Mas-Colell et al. (1995, Example 6.C.1, p. 187-188).
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Lecture 5

States and subjective expected utility

5.1 State space representation

Until now we studied a framework of uncertainty in which the underlying state generating
the probability of outcomes was not modelled explicitly, as discussed in Remark 1.1.
There are two advantages of modelling uncerlying states of the world explicitly. The first
is that the individual might care about the state per se. Consider the following example.

Example 5.1. The birthday of your child is coming up. The problem is that you do not
know whether it will rain or be sunny that day. You are a sophisticated parent who offers
him monetary bets on the climate whose payoffs he can spend on his birthday party. If
it is sunny, he will have a great time playing outside with his friends, while if it rains he
will be obliged to organise something indoors. Therefore, he may enjoy each euro spent
on his birthday more when it is sunny than when it is raining: his preferences over money
depend on the weather.1 ■

The first advantage of modelling states explicitly is that it allows us to capture pref-
erences that depend on the state of the world, as in Example 5.1. There is a second
advantage of modelling states explicitly, but it is easier to explain after we introduce the
framework. As in Lecture 1, there is a finite set of outcomes X, in Example 5.1 these
are the amounts of money the child could get. Moreover, there is a finite set of mutually
exclusive states of the world S. In the words of Arrow (1971, p. 45) each state is “a
description of the world so complete that, if true and known, the consequences of every
action would be known”. In Example 5.1, these are the weather conditions, rain or sun.
The individual chooses an act, which is a function from states to outcomes f : S → X.
Act f in state s leads to the outcome fs. In Example 5.1, an act is a state-contingent
bet. If it rains, the child gets frain euros, while if it is sunny he gets fsun euros. Acts
are referred to as Savage acts, after Savage (1972),2 who introduced the framework and
derived subjective expected utility in Definition 5.3 below.

We can now discuss the second advantage of modelling states explicitly. In Lecture
1, the individual chooses among lotteries, probability distributions over outcomes. From
individual preferences over lotteries, we can infer his Bernoulli utility over outcomes u,
and various properties it might have, such as risk aversion. However, the probability of
realisation of outcomes is given. Most of the time, it is not clear what the probability of

1The example is inspired by Tsakas (2025)
2The first edition was published in 1954.
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an outcome is, and the individual might have her own beliefs about these probabilities.
Notice that, in the current framework, we have not introduced any probability yet. The
idea is that we want to infer both the individual’s utility over outcomes u and her beliefs
about the likelihood of states p from her preferences over acts. We proceed as we did
in Lecture 1, by studying preferences over acts that have a functional representation of
interest.

You should notice that, in this setting, there is no natural mixing operation comparable to
the one we had for lotteries in Lecture 1.

5.2 Subjective expected utility

We now study preferences over acts, that is, if f ≿ f ′ we say the individual weakly prefers
act f to act f ′. The set of all acts is denoted by XS, i.e., the set of all functions from S to
X. The definition of a utility function representing preferences is analogous to Definition
1.1.

Definition 5.1. A utility function U : XS → R represents the preference relation ≿

over acts if, for all acts f, f ′,

f ≿ f ′ ⇐⇒ U(f) ≥ U(f ′).

Under suitable conditions on preferences ≿, we can represent them through a form of
expected utility paralleling the one we considered until now.

Definition 5.2. Preferences ≿ over acts have a state-dependent subjective expected
utility representation if there exists a probability distribution over states p ∈ ∆(S) and,
for each state s, a utility function over outcomes us : X → R such that, for all acts f ,

U(f) =
∑
s

p(s)us(fs). (5.1)

Let us discuss the interpretation of Definition 5.2. The individual has subjective beliefs
about the likelihood of states, represented by the probability distribution p. Moreover, she
has preferences over outcomes that depend on the state of the world, represented by the
state-dependent utility functions us. The individual evaluates each act f by computing
its expected utility according to his subjective beliefs p, as represented by Equation (5.1),
and prefers acts with higher expected utility.

If you think Equation (5.1) is the same as objective expected utility from Lecture 1,
think twice. First, we could not define a state-dependent utility us, because there were no
states. But second, and more importantly, in objective expected utility the probabilities
were given, while here they are subjective, that is, they represent the individual’s beliefs
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about the likelihood of states. We can infer beliefs from preferences. In other words, if
you compare two individuals with distinct preferences over acts, they might have different
beliefs about the likelihood of states, even if they have the same utility over outcomes.

A question you might ask yourself is to what extent preferences us and beliefs p are
unique, as we did for objective expected utility in Lecture 1. The answer to this question
poses problems for the interpretation of sate-dependent subjective expected utility we
gave above. Consider the following transformation of u:

ũs = αs + βs
p(s)

p̃(s)
us,

for αs ∈ R and βs > 0, and p̃ ∈ ∆(S). We can then compute:

Ũ(f) =
∑
s

p̃(s) ũs(f(s))

=
∑
s

p̃(s)

(
αs + βs

p(s)

p̃(s)
us(f(s))

)
=

∑
s

p̃(s)αs +
∑
s

βsp(s)us(f(s))

= α + U(f).

Therefore, Ũ(f) represents the same preferences as U(f). We are not able to identify
beliefs and preferences uniquely. The statement “an individual prefers act f to act f ′

because she believes state s is very likely and likes outcome x a lot in that state” is not
well defined, as we can change beliefs and preferences in a way that leaves preferences
over acts unchanged.3 (Kreps, 1988, p. 36) suggests that it would be more appropriate
to write Equation (5.1) as

U(f) =
∑
s

vs(fs),

that is, state-dependent subjective expected utility is just additive separability across
states.

We can solve this identification problem by imposing that preferences over outcomes
do not depend on the state of the world, that is, us = u for all states s. In this case, we
obtain the following definition.

Definition 5.3. Preferences ≿ over acts have a subjective expected utility represen-
tation if there exists a probability distribution over states p ∈ ∆(S) and a utility function
over outcomes u : X → R such that, for all acts f ,

U(f) =
∑
s

p(s)u(fs). (5.2)

3Unfortunately, this identification problem is often put under the rug, leading to sloppy interpretations
of the role of beliefs.
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In Definition 5.3, contrary to Definition 5.2, individual preferences over outcomes do
not depend on the state. Such model has stronger uniqueness properties: if (p, u) and
(p̃, ũ) both represent preferences through Equation (5.2), then there exist α ∈ R and
β > 0 such that ũ = α+ βu and p̃ = p. Therefore, beliefs p are uniquely identified, while
utility u is identified up to positive affine transformations, as in objective expected utility.
In this case we can interpret the probability p as the individual’s subjective beliefs about
the likelihood of states.

What assumptions over preferences over acts are equivalent to the existence of a
subjective expected utility representation? The answer is given by Savage’s Theorem
(Savage, 1972). Unfortunately, such axiomatic analysis is beyond the scope of this lecture.
However, we will focus on the main axiom that allows us to obtain subjective expected
utility, the Sure-Thing Principle. To state it, we need some notation.

Recall that an event is a subset of states E ⊆ S. For each event E, we write Ec for
the complement of E in S, that is, the set of states in S that are not in E. For any two
acts f, g and any event E ⊆ S define an act fEg such that

fEg(s) =

f(s) if s ∈ E

g(s) if s ∈ Ec

That is, act fEg agrees with act f on states in event E, and with act g on states
outside event E.

Axiom 5.1. (Sure-thing principle) For all acts f, g, f ′, g′ and event E,

fEg ≿ f ′
Eg if and only if fEg

′ ≿ f ′
Eg

′.

In words, the Sure-thing principle says the following: if the individual prefers f to
f ′ on states in event E, then what happens outside E should not matter. The ranking
between f and f ′ on E should not be reversed by changing g to g′ outside E. The Sure-
thing principle is the key axiom of Subjective Expected Utility. Savage (1972) showed
that the Sure-thing principle, together with other axioms, is equivalent to the existence
of a subjective expected utility representation as in Definition 5.3, an axiomatic analysis
paralleling the one we developed for objective expected utility in Theorem 2.1.

However, as for Independence, we have empirical evidence that individuals’ choices
sometimes violate the Sure-thing principle. The most famous example is the Ellsberg
paradox, by Ellsberg (1961). Consider the following tought experiment. An urn contains
90 balls, of which 30 are red, while the remaining 60 are either black or yellow, in an
unknown proportion. The state space in this example comprises therefore the colors of
the balls: S = {R,B, Y }. You are offered to bet on the colour of a randomly drawn ball
from the urn. You can choose between the following acts:

• f : You win 1 euro if the ball is red, and nothing otherwise.
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• g: You win 1 euro if the ball is black, and nothing otherwise.

• f ′: You win 1 euro if the ball is red or yellow, and nothing otherwise.

• g′: You win 1 euro if the ball is black or yellow, and nothing otherwise.

These acts can be summarised in the following table:

R B Y

f 1 0 0

g 0 1 0

f ′ 1 0 1

g′ 0 1 1

Many people prefer f to g, and g′ to f ′. However, such preferences violate the Sure-
thing principle. Let E = {R,B} and consider two acts h0 and h1 such that

h0(s) = 0 and h1(s) = 1 for all s.

Then we can rewrite the four acts in the table as

f = fEh
0, g = gEh

0, f ′ = fEh
1, g′ = gEh

1.

Apply the Sure-thing principle with the acts f, g, h0, h1 and event E. The axiom says
that

fEh
0 ≿ gEh

0 ⇐⇒ fEh
1 ≿ gEh

1,

that is,

f ≿ g ⇐⇒ f ′ ≿ g′.

Hence it is impossible to have f ≻ g and g′ ≻ f ′ without violating the Sure-thing
principle.

One explanation for this behaviour is that people dislike ambiguity, that is, situations
in which the likelihood of states is unknown. In the Ellsberg paradox there are 30 red
balls and 60 balls that are either blue or yellow, in unknown proportions. Thus, the
probability of drawing a red ball is known, while the probability of drawing a blue ball is
unknown. In the first pair, act f pays 1 only if R occurs, so it yields a known probability
of winning of 1

3
. Act g pays 1 only if B occurs, so its probability of winning depends on

the unknown fraction of blue balls in the urn. Many people therefore prefer the bet with
known probability f to the bet with unknown probability g.

In the second pair, act f ′ pays 1 if either R or Y occurs. Since the probability of B
is unknown, the probability of R ∪ Y is also unknown: it could be anywhere between 1

3

and 1. By contrast, g′ pays 1 if either B or Y occurs, and the probability of B ∪ Y is
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known to be 2
3
. So in this case people tend to prefer g′, a bet with known probability 2

3
,

to f ′, a bet with unknown probability.
A plethora of theories of choice under uncertainty have been proposed to account for

such violations of the Sure-thing principle. One of the most influential branches attempts
to explain the Ellsberg paradox with ambiguity aversion, therefore introducing a notion
of preferences exhibiting such a property. The seminal paper is Schmeidler (1989).

Any ideas on how the Sure-thing principle could be relaxed to account for the Ellsberg
paradox?

Things to read. For a textbook treatment of the content of this lecture, see Kreps
(1988, pp. 33-38) or Fishburn (1970, ch. 12). If you are interested in more details, read
Kreps (1988, Chs. 8-9) or Fishburn (1970, ch. 14). By the way, Kreps (1988, p. 127)
defines Savage (1972)’s theory nothing less than “the crowning achievement of single-
person decision theory”. At this point of the class, you might be interested in reading
Gilboa (2009) for an overview of our current understanding of decision-making under
uncertainty.

5.3 Exercises

Exercise 5.1. Show that the subjective expected utility representation in Definition 5.3
satisfies the Sure-thing principle.

Solution to Exercise 5.1. Let f, g, f ′, g′ be acts and E ⊆ S an event. Assume that fEg ≿

f ′
Eg. By Definition 5.3, this means that

∑
s∈E

p(s)u(f(s)) +
∑
s∈Ec

p(s)u(g(s)) ≥
∑
s∈E

p(s)u(f ′(s)) +
∑
s∈Ec

p(s)u(g(s)).

Subtracting the common term
∑

s∈Ec p(s)u(g(s)) from both sides, we obtain

∑
s∈E

p(s)u(f(s)) ≥
∑
s∈E

p(s)u(f ′(s)).

By adding the common term
∑

s∈Ec p(s)u(g′(s)) to both sides, we get

∑
s∈E

p(s)u(f(s)) +
∑
s∈Ec

p(s)u(g′(s)) ≥
∑
s∈E

p(s)u(f ′(s)) +
∑
s∈Ec

p(s)u(g′(s)),

that is, fEg′ ≿ f ′
Eg

′. The reverse implication is analogous.

Exercise 5.2. Can you find a parallel between the Sure-thing principle and the Indepen-
dence from Lecture 2? Think about compound lotteries and acts that agree on all states
except one.
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Solution to Exercise 5.2. Consider two lotteries p, p′ and a third lottery q. Consider a
probability α ∈ (0, 1) and the compound lotteries αp + (1 − α)q and αp′ + (1 − α)q.
Independence says that

p ≿ p′ ⇐⇒ αp+ (1− α)q ≿ αp′ + (1− α)q.

Now consider two acts f, f ′ and a third act g. Consider an event E ⊆ S and the acts
fEg and f ′

Eg. The Sure-thing principle says that

f ≿ f ′ ⇐⇒ fEg ≿ f ′
Eg.

Both axioms say that the ranking between two objects, lotteries or acts, should not
be affected by mixing them with a third object, lottery or act, that is the same in both
cases.

Exercise 5.3. There is a second important model of uncertainty using a state space,
by Anscombe & Aumann (1963).4 In this model, the individual chooses acts mapping
state of the world to lotteries, rather than outcomes. That is, each act is a function
f : S → ∆(X). Write down a subjective expected utility representation for this model.
What do you think the advantages of this model are? (Think about the remark about
mixing in the text.)

Solution to Exercise 5.3. In this model, preferences ≿ over acts have a subjective ex-
pected utility representation if there exists a probability distribution over states p ∈
∆(S) and a utility function over outcomes u : X → R such that, for all acts f ,

U(f) =
∑
s

p(s)
∑
x∈X

f [s](x)u(x).

The advantage of this model is that we can define mixing of acts naturally. Given
two acts f, g and a probability α ∈ (0, 1), we can define the mixed act h = αf + (1−α)g

such that

h(s) = αf(s) + (1− α)g(s),

that is, in each state the mixed act yields the mixed lottery. This allows us to define
an independence axiom for acts analogous to the one we had for lotteries in Lecture 2.
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Lecture 6

Introduction to exchange economies

6.1 A primer on consumer choice

Before we turn to general equilibrium, we need to review a few basic concepts about
consumer choice. The setting is intuitive. There is a single individual i who consumes
bundles of ℓ different goods. The quantity of each good is represented by a real number.
The consumption space is therefore Rℓ

+. A generic consumption bundle for individual i
is xi = (x1

i , . . . , x
ℓ
i). We use subscripts for individuals and superscripts for goods. For

example, if ℓ = 2, a consumption bundle could be xi = (3, 5), meaning 3 units of good 1
and 5 units of good 2, as represented in Figure 6.1. We index consumption bundles by
i because later we will consider multiple individuals, each with their own consumption
bundle.

x1

x2

3

5

Figure 6.1: A consumption bundle xi = (3, 5) in a two-good consumption space.

Now suppose there is a vector of prices p = (p1, . . . , pℓ), where pk is the price of good
k. Also assume that the individual has monetary wealth wi ∈ R+. He can therefore
consume any bundle xi such that total expenditure does not exceed wi, that is, such that
p · xi ≤ wi.1 The set of all consumption bundles that satisfy this condition is called the
budget set, and is denoted by

1The operation · denotes the product p1x1
i + · · ·+ pℓxℓ

i .
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B(p, wi) = {xi ∈ Rℓ
+ | p · xi ≤ wi}.

The budget set is illustrated in Figure 6.2 in the two-good case. The budget line
is the boundary of the budget set: it consists of all consumption bundles xi such that
p · xi = wi. If the individual consumes only good 1, then setting x2

i = 0 yields x1
i = wi

p1
.

Similarly, if he consumes only good 2, then setting x1
i = 0 yields x2

i = wi

p2
. These two

points are the intercepts of the budget line. The slope of the budget line is the relative
price

wi = p1x1
i + p2x2

i =⇒ x2
i =

wi

p2
− p1

p2
x1
i .

x1

x2

wi

p1

wi

p2

−p1

p2

Figure 6.2: A budget set B(p, wi) in a two-good consumption space.

The individual has preferences over consumption bundles. In previous lectures we
studied choice under uncertainty, where the outcome of a choice is to some extent random.
Here there is no uncertainty: the individual has preferences ≿i over the consumption space
Rℓ

+. As we did for the simplex, we can visualise these preferences by drawing indifference
curves in the consumption space, as in Figure 6.3. All bundles on the same indifference
curve are equally good for the individual.
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x1

x2

≿i

Figure 6.3: An indifference curve in the consumption space R2
+.

The individual would like to choose the most preferred bundle among those he can
afford. Affordability is determined by the budget, and therefore by prices and wealth.
Any most preferred affordable bundle is what the individual “demands” at the given prices
and wealth. The Walrasian demand of an individual with preferences ≿i, at prices p

and wealth wi, is

Di(p, wi) = {xi ∈ B(p, wi) | xi ≿i x
′
i for all x′

i ∈ B(p, wi)}.

In other words, a bundle xi belongs to Di(p, wi) if it is affordable and at least as good
as every other affordable bundle. In general, Walrasian demand is a set: it may happen
that several affordable bundles tie for being best. We can visualise Walrasian demand
graphically. For example, for the preferences represented in Figure 6.3, and assuming
preferences are increasing in each good, Walrasian demand is a single point, as shown in
Figure 6.4.

x1

x2

≿i

xi

Figure 6.4: Walrasian demand for preferences ≿i.
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What kind of indifference curves should ≿i have for the Walrasian demand to contain more
than one element? Can you construct an example in the graph?

In the next section, we build on these basics to consider the choices of two individuals
simultaneously.

6.2 Illustrative example of exchange economy

We now move from individual choice, which we studied in the previous lectures, to col-
lective choice. In general equilibrium theory, we generalise concepts from individual
consumer choice to an economy with multiple individuals. In this section we start from
a simple example with two individuals and two goods, which we will later generalise.

Suppose there are two individuals 1 and 2 and two goods. Each individual has the
consumption space R2

+, and a consumption bundle xi = (x1
i , x

2
i ). We can represent the

consumption space of individual 1, together with his indifference curves, as we did in
Figure 6.3. For individual 2, we can do the same, but suppose we draw his consumption
space upside down, as in Figure 6.5 (bear with me).

x1

x2

Figure 6.5: Consumption space of individual 2 upside down.

Now we can combine the two consumption spaces in a single graph, called the Edge-
worth box, as in Figure 6.6. The total width of the box is the total amount of good
1 available in the economy as a whole, and the total height is the total amount of good
2 available. The two origins O1 and O2 are at the bottom left and top right corners of
the box, respectively. Each point in the box represents an allocation of goods between
the two individuals. For example, the point x represents the allocation in which indi-
vidual 1 consumes (x1

1, x
2
1) and individual 2 consumes (x1

2, x
2
2). The consumption of each

53



individual i is read by viewing the box from the perspective of origin Oi.

O1

O2

x1

x2

x

Figure 6.6: Edgeworth box representing the consumption spaces of individuals 1 and 2.

We can also represent the indifference curves of both individuals through x in the
Edgeworth box, as in Figure 6.7. The indifference curve of individual i is indicated with
≿i.

O1

O2

x1

x2

x

≿1

≿2

Figure 6.7: Edgeworth box representing the consumption spaces of individuals 1 and 2.
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We assume that preferences are increasing in each good. Therefore, both individuals
would like to move away from the origin of their own consumption space. For example,
individual 1 prefers being on the dotted indifference curve rather than on the solid one
in Figure 6.7.

O1

O2

x1

x2

x

≿1

≿2

Figure 6.8: Individual 1 would prefer to move on the dotted indifference curve.

Now suppose that each individual has an initial endowment of goods, that is, a bundle
of goods that he initially owns. The endowment of individual i is denoted by ei = (e1i , e

2
i ).

The initial endowments determine the initial allocation in the Edgeworth box. The total
endowment in the economy is ē = e1 + e2, and this determines the size of the Edgeworth
box. In principle, individuals can trade their endowments to reach preferred allocations.

Now suppose there are prices in the economy, given by the vector p = (p1, p2), one
for each good. Given prices and endowments, we can compute the initial wealth of each
individual. In individual consumer choice, wealth was given as a monetary amount wi,
whereas here it is the value of the endowment at the given prices. The wealth of individual
i is therefore wi = p · ei = p1e1i + p2e2i . Hence, the budget set of individual i consists of
all consumption bundles xi such that p · xi ≤ p · ei. So the budget set is2

B(p, ei) = {xi ∈ R2
+ | p · xi ≤ p · ei}.

We can draw the budget line in the Edgeworth box, as in Figure 6.9. First, it passes
through the endowment point, since the individual can always afford to consume his
initial endowment. Second, the slope of the budget line is given by the relative price, as
we saw in individual consumer choice.
2There is a slight abuse of notation: to be fully consistent with the earlier definition, I should write
B(p, p · ei).
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O1

O2

x1

x2

e

≿1

≿2

p

B(p, e1)

B(p, e2)

Figure 6.9: Budget line and budget sets in the Edgeworth box.

Individuals may then choose their favourite consumption bundle in their budget set
according to their preferences, that is, a bundle in their Walrasian demand set. When
both individuals choose a bundle from their Walrasian demand set at the same prices, we
can ask whether total demand is equal to the total endowment in the economy. If this is
the case, we have found a Walrasian equilibrium, as illustrated in Figure 6.10.

O1

O2

x1

x2

e

≿1

≿2

x

Figure 6.10: Walrasian equilibrium x in the Edgeworth box.
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In the rest of the lectures, we mainly focus on the properties of Walrasian equilibria.
One might wonder whether Walrasian equilibria induce allocations that are desirable in
some sense. Let us consider a possible criterion of desirability. Take an allocation x in the
Edgeworth box. Is there any other allocation x′ such that both individuals weakly prefer
x′ to x, and at least one of them strictly prefers it? If such an allocation x′ exists, then
we say that x′ is a Pareto improvement over x, since at least one individual is strictly
better off and no individual is worse off. If no such allocation x′ exists, then we say that
x is Pareto optimal. As an example, the endowment allocation e in Figure 6.10 is not
Pareto optimal. Pareto optimality is arguably a minimal requirement for an allocation
to be considered desirable. The first theorem of welfare economics states that, under
some assumptions, any Walrasian equilibrium allocation is Pareto optimal, and therefore
that Walrasian equilibria satisfy this minimal requirement of desirability.3 In fact, the
Walrasian equilibrium allocation x in Figure 6.10 is Pareto optimal.

However, Pareto optimality is sometimes too weak. For example, the corners of the
Edgeworth box are Pareto optimal, but one might argue that they are not desirable
allocations. Pareto optimality is a requirement of efficiency. No resource is wasted in
achieving preference satisfaction. An efficiency requirement might be complemented by a
fairness requirement. Luckily, there is an extensive literature on fairness in social choice
theory, deeply informed by philosophical work.4

A notion of fairness that has been widely studied is that of envy-freeness.5 An
allocation x is envy-free if no individual prefers another individual’s bundle to his own.
In other words, individual i does not envy individual j if xi ≿i xj. An allocation is
envy-free if, for every pair i ̸= j, individual i does not envy individual j. Envy-freeness is
related to equality of opportunities, for reasons that we clarify in the next lectures. For
now, just note that the corner allocations in the Edgeworth box are not envy-free under
our assumptions.

We know from the first theorem of welfare economics that Walrasian equilibria are
Pareto optimal. But what if we want to select particular Pareto efficient allocations, for
example those that are also envy-free? The second theorem of welfare economics states
that, under suitable assumptions, any Pareto optimal allocation can be supported by
a Walrasian equilibrium, following a redistribution of initial endowments. Therefore, if
there exists an envy-free Pareto optimal allocation, then there exists a Walrasian equi-
librium that supports it. It looks as though Walrasian equilibria can deliver desirable
allocations, after a suitable redistribution of initial endowments.6

3However, some people reject Pareto optimality. One reason is that it is defined entirely in terms of
preferences, while we might want to evaluate allocations using other considerations.

4If you are interested, check Moulin (1988), Young (1994), Roemer (1996), Moulin (2004), Fleurbaey
(2008), Fleurbaey & Maniquet (2011), Thomson (2011). Gabriel Carroll has a syllabus for an interesting
class here, if you want to explore further.

5Apparently it has been introduced by Jan Tinbergen (Heilmann & Wintein, 2021).
6Aviad Heifetz suggested this motivation to me for discussing the second theorem of welfare economics.
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Things to read. It might be useful for you to review (or study, if you have never
encountered these topics before) Hildenbrand & Kirman (1976, pp. 51–70, 76–84). If you
want (and you “should want”) to go further, study Mas-Colell et al. (1995, pp. 17–23,
40–56). There is a worked-out example of a simple exchange economy in Mas-Colell et
al. (1995, pp. 515–525). You can play with this online tool to visualise the Edgeworth
box and envy-free allocations under different preferences and endowments. It was shared
with me by Aviad Heifetz.

6.3 Exercises

Exercise 6.1. Prove that Walrasian demand satisfies the following property: for any
prices p, wealth wi, and any scalar α > 0,

Di(αp, αwi) = Di(p, wi).

This property is called homogeneity of degree zero of Walrasian demand.

Solution to Exercise 6.1. Let xi ∈ Di(p, wi). Now consider the budget set B(αp, αwi). A
bundle zi belongs to this budget set if and only if

αp · zi ≤ αwi.

Dividing both sides by α > 0, we get

p · zi ≤ wi,

which means that zi ∈ B(p, wi). Therefore, the budget sets are equal:

B(αp, αwi) = B(p, wi).

Since the budget sets are the same, the maximisation problem faced by the individual
is unchanged. Therefore, the Walrasian demand sets must also be equal:

Di(αp, αwi) = Di(p, wi).

Exercise 6.2. Assume that preferences ≿i are increasing in each good. Prove that, for
any strictly positive prices p and wealth wi, the Walrasian demand Di(p, wi) contains
only bundles xi that satisfy p · xi = wi. This property is referred to as Walras’ law.

Solution to Exercise 6.2. Let xi ∈ Di(p, wi). Suppose, for the sake of contradiction, that
p·xi < wi. Since preferences are increasing in each good, there exists a bundle zi such that
zi ≻i xi and p ·zi ≤ wi. This means that zi ∈ B(p, wi) and zi ≻i xi, which contradicts the
fact that xi is in the Walrasian demand set. Therefore, it must be the case that p ·xi = wi

for all xi ∈ Di(p, wi).
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Exercise 6.3. An individual has to choose consumption today c1 and consumption to-
morrow c2. He has an initial endowment of wealth w1 today and w2 tomorrow. He can
save or borrow at an interest rate r. What is the budget constraint of the individual?

Solution to Exercise 6.3. The individual can transfer wealth between today and tomor-
row by saving or borrowing. If he saves an amount s today, he will have (1+r)s available
for consumption tomorrow. Conversely, if he borrows an amount b today, he will have to
repay (1 + r)b tomorrow.

The budget constraint can be expressed as follows:

c1 +
c2

1 + r
≤ w1 +

w2

1 + r
.

The present value of consumption today and tomorrow cannot exceed the present
value of the initial endowment.

Exercise 6.4. An individual has to choose hours of work h and hours of leisure l. He
has a total of T hours available, so that h+ l = T . He earns a wage w per hour worked.
What is the budget constraint of the individual in terms of consumption c and leisure l?

Solution to Exercise 6.4. The individual has a total of T hours available, which he can
allocate between work h and leisure l. The individual’s income from work is given by the
wage rate w multiplied by the hours worked h:

Income = w · h = w · (T − l).

Assuming that the individual spends all his income on consumption c, the budget
constraint can be expressed as:

c = w · (T − l).

Rearranging this, we can express the budget constraint in terms of consumption c and
leisure l:

c+ w · l = w · T.

The total expenditure on consumption and the value of leisure cannot exceed the total
income from working all available hours.

Exercise 6.5. Assume that two individuals are in a situation like the one in Figure 6.8.
Draw in the Edgeworth box the set of allocations that constitute an improvement over
x for both individuals. In principle, they could trade to reach these allocations, without
any outside intervention or money. Assume they bargain to reach one of these allocations.
Which allocation would you expect them not to reach? Are these allocations fair?
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Exercise 6.6. There is a simple graphical test to check whether an allocation in the
Edgeworth box is envy-free. Look at Figure 6.11. Allocation x is not envy-free. The
centre of the box is the point where each individual gets half of the total endowment.
Allocation x′ is the reflection of x with respect to the centre of the box. Why does
this imply that allocation x is not envy-free? Can you understand the test? Draw an
allocation that is envy-free and check that the graphical test works. You can use any
indifference curves you like.

O1

O2

x1

x2

≿1

≿2

x (
ē
2
, ē
2

)

x′

Figure 6.11: Graphical test for envy-freeness.

Solution to Exercise 6.6. Check Thomson (2011, Figure 21.1, p. 403).
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Lecture 7

General equilibrium theory

7.1 Exchange economies

Primitives and definitions. We now generalise the example in Section 6.2. There is
a set of n individuals I = {1, . . . , n} and the consumption space Rℓ

+. Each individual has
an endowment ei ∈ Rℓ

+, where ei = (e1i , . . . , e
ℓ
i). The total endowment in the economy is

∑
i

ei = ē.

Each individual has preferences ≿i over Rℓ
+. A generic consumption bundle for in-

dividual i is xi = (x1
i , . . . , x

ℓ
i). We always assume that preferences are complete and

transitive for each i.
An economy is a profile E = (≿i, ei)i∈I . An allocation x is feasible for E if

∑
i

xi ≤ ē.

Feasible allocations are elements of Rℓn
+ . A price vector is p = (p1, . . . , pℓ) ∈ Rℓ

+,
which assigns a price to each good. For each price vector, we define the budget set of an
individual with endowment ei.

Definition 7.1. Given endowment ei and prices p, the budget set is

B(p, ei) =
{
xi ∈ Rℓ

+

∣∣ p · xi ≤ p · ei
}
.

Note that the budget set is always convex and, when all prices are strictly positive,
it is also compact. We will often assume prices are strictly positive. Given prices p,
endowment ei, and preference relation ≿i, we define the Walrasian demand.

Definition 7.2. The Walrasian demand of i, given endowment ei and prices p, is

Di(p, ei) = {xi ∈ B(p, ei) | xi ≿i x
′
i for all x′

i ∈ B(p, ei)} .

The Walrasian demand is the set of most preferred bundles in the budget set.
Given a preference relation ≿i, we define the upper and lower contour sets at

bundle xi:

Ui(xi) := {x′
i ∈ Rℓ

+ | x′
i ≿i xi } and Li(xi) := {x′

i ∈ Rℓ
+ | xi ≿i x

′
i }.
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A bundle x′
i is in the upper contour set of xi if it is weakly preferred to xi; it is in

the lower contour set if it is weakly dispreferred to xi. These sets are useful for defining
some properties of preference relations. They are illustrated in Figure 7.1, assuming that
≿i is increasing.

x1

x2

≿i

xi

Ui(xi)

Li(xi)

Figure 7.1: Upper and lower contour sets at bundle xi.

Properties of preferences. As we did with preferences over lotteries, we now define
some properties of preferences over consumption bundles. Some of the results we present
later require these properties. Note that we are studying preferences over Rℓ

+, which
has a structure we can exploit. However, we no longer have lotteries, so we cannot use
properties that rely on that structure, for example independence.1

Definition 7.3. A preference relation ≿i is locally non-satiated if, for every xi ∈ Rℓ
+

and every ε > 0, there exists x′
i ∈ Rℓ

+ such that ∥x′
i − xi∥ < ε and x′

i ≻i xi.

Local non-satiation says that in every neighbourhood of every bundle there is another
bundle that is strictly preferred. It is a weak form of monotonicity. In fact, monotonicity
implies Local non-satiation, but the converse is not true. It rules out the case in which all
goods are bads, in the sense that individuals do not like them. Local non-satiation also
rules out thick indifference curves. Consider the preferences represented in Figure 7.2.
These preferences are not locally non-satiated at bundle xi, since in any neighbourhood
of xi there is no strictly preferred bundle.

1However, in general equilibrium under uncertainty the lottery structure is important, see Mas-Colell et
al. (1995, ch. 19).
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x1

x2

≿i

xi

Figure 7.2: Preferences that are not locally non-satiated at bundle xi.

A second important property is convexity.

Definition 7.4. A preference relation ≿i is convex if for all xi, x
′
i, x

′′
i ∈ Rℓ

+, whenever
x′
i ≿i xi and x′′

i ≿i xi, then

αx′
i + (1− α)x′′

i ≿i xi for all α ∈ [0, 1].

Convexity is equivalent to upper contour sets being convex.2 It captures a form of
diminishing marginal returns. It can also be viewed as a preference for diversification.

Finally, we define continuity.

Definition 7.5. A preference relation ≿i on Rℓ
+ is continuous if for every bundle xi ∈

Rℓ
+, both the upper and lower contour sets of xi are closed.

Continuity says that small changes in consumption bundles do not lead to jumps in
preferences. If you are wondering about the relationship between this notion of continuity
and the notion of Continuity over lotteries from Chapter 2, the answer is that the latter
is weaker than the former. However, under the independence axiom for preferences over
lotteries, they are equivalent.3

If a preference relation ≿i is continuous, then for every endowment ei and every
strictly positive price vector p ∈ Rℓ

++, the Walrasian demand Di(p, ei) is non-empty.
This is because a complete, transitive, and continuous preference relation admits a con-
tinuous utility representation (Mas-Colell et al., 1995, Proposition 3.C.1).4 The budget
2You are asked to show this in Exercise 7.1.
3Actually, the notion of Archimedean continuity in Lecture 2 is equivalent to continuity in Definition 7.5
even under a specific weakening of independence (Karni, 2007).

4Interestingly, the result dates back to Cantor (1915); see the discussion in Gilboa (2009, ch. 6.1).
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set B(p, ei) is compact when prices are strictly positive, so the continuous utility function
attains a maximum on it. If preferences are also locally non-satiated, then the Walrasian
demand Di(p, ei) lies on the budget line {xi ∈ Rℓ

+ | p · xi = p · ei}.5

You might wonder whether there exists a reasonable-looking preference relation that is not
continuous. The answer is yes. Consider the lexicographic preference relation on R2

+: for any
two bundles xi = (x1i , x

2
i ) and x′i = (x′1i , x

′2
i ), define x′i ≿i xi if either (i) x′1i > x1i , or (ii) x′1i = x1i

and x′2i ≥ x2i . This preference relation is complete and transitive, but it is not continuous. If
you want, you can have fun showing this (or check Mas-Colell et al. (1995, p. 47)).

7.2 Allocations, rules and their properties

We have introduced the primitives of an exchange economy of interest. Given these
primitives, we ask which allocations we can select in this economy. Such an allocation
should have two types of properties: first, it should satisfy some normative criteria,
for example efficiency or distributional fairness; second, it should be compatible with
individuals’ incentives, otherwise we could simply force an allocation while disregarding
individual preferences.

The efficiency criterion we use is Pareto optimality.

Definition 7.6. A feasible allocation x is Pareto optimal if there is no feasible alloca-
tion x′ with x′

i ≿i xi for all i and x′
j ≻j xj for some j.

Pareto optimality says that a feasible allocation is Pareto optimal if there is no other
feasible allocation that makes everyone weakly better off and at least one individual
strictly better off.

The distributional criterion we consider is no-envy.

Definition 7.7. An allocation x satisfies no-envy if for all individuals i and j,

xi ≿i xj.

An allocation satisfies No-envy if no individual prefers the bundle of another individual
to his own bundle.

For individual incentives, we consider Walrasian equilibrium.

Definition 7.8. A feasible allocation x is a Walrasian equilibrium if there exist strictly
positive prices p ∈ Rℓ

++ such that, for all individuals i,

xi ∈ Di(p, ei).

5You are asked to show this in Exercise 7.2.
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An allocation is a Walrasian equilibrium if there exist prices such that each individual
would consume a bundle in his Walrasian demand given his endowment and those prices.
Notice that we are not saying that these prices exist and that individuals actually face
them. Instead, we are detailing a property of an allocation: can such an allocation be, in
principle, the result of an individual optimisation problem in the style of choice theory?
If yes, then the allocation is a Walrasian equilibrium.

We will consider a couple of variants of Walrasian equilibrium. A Walrasian equilib-
rium with transfers is a generalisation in which we allow transfers among individuals
before they optimise.

Definition 7.9. A feasible allocation x is a Walrasian equilibrium with transfers if
there exist strictly positive prices p ∈ Rℓ

++ and transfers (Ti)i∈I satisfying

∑
i

Ti = 0 and ei + Ti ∈ Rℓ
+ for all i,

such that
xi ∈ Di(p, ei + Ti) for all i.

An allocation is a Walrasian equilibrium with transfers if there exist prices and trans-
fers such that each individual would consume a bundle in his Walrasian demand given his
adjusted endowment and those prices. Each Walrasian equilibrium is also a Walrasian
equilibrium with transfers with no transfers, that is, Ti = 0 for all i.

The last equilibrium notion we consider is Egalitarian Walrasian equilibrium.

Definition 7.10. A feasible allocation x is an Egalitarian Walrasian equilibrium if
there exist strictly positive prices p ∈ Rℓ

++ such that

xi ∈ Di

(
p,

ē

n

)
for all i.

An allocation is a Egalitarian Walrasian equilibrium if there exist prices such that
each individual would consume a bundle in his Walrasian demand given an equal share
of the total endowment and those prices. Suppose we collect all the resources in the
economy and redistribute them equally among individuals before they optimise. If the
resulting allocation is a Walrasian equilibrium, it is a Egalitarian Walrasian equilibrium.

Let F (E) be the set of feasible allocations. Which feasible allocations do we want
to select? To answer this question, we introduce allocation rules. An allocation rule
R maps an economy E to a subset of feasible allocations R(E) ⊆ F (E). The standard
axiomatic approach is to introduce assumptions on R and see what allocations it induces.
For example, we might impose that R only selects Pareto optimal allocations. In what
follows, we study allocation rules that select allocations with the efficiency, distributional,
and incentive properties we introduced above.
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Definition 7.11. An allocation rule RW is Walrasian if for all economies E it selects
allocations that are Walrasian equilibria; that is, if for all E

RW (E) =
{
x ∈ F (E)

∣∣ ∃p ∈ Rℓ
++ s.t. xi ∈ Di(p, ei) for all i

}
.

An allocation rule is Walrasian if it selects all Walrasian equilibria of the economy.
Equivalently, we can define allocation rules that select all Walrasian equilibria with trans-
fers and all Egalitarian Walrasian equilibria.

Definition 7.12. An allocation rule RWT is Walrasian with transfers if for all
economies E it selects allocations that are Walrasian equilibria with transfers; that is,
if for all E

RWT (E) =

x ∈ F (E)

∣∣∣∣∣∣∣∣ ∃ p ∈ Rℓ
++, ∃ (Ti)i s.t. ei + Ti ∈ Rℓ

+ for all i,
∑

i Ti = 0

xi ∈ Di(p, ei + Ti) for all i

 .

Definition 7.13. An allocation rule REW is Egalitarian Walrasian if for all economies
E it selects allocations that are Egalitarian Walrasian equilibria; that is, if for all E

REW (E) =
{
x ∈ F (E)

∣∣∣ ∃p ∈ Rℓ
++ s.t. xi ∈ Di

(
p,

ē

n

)
for all i

}
.

In the next lectures, we will study properties of these allocation rules and the rela-
tionships between them.

A question you might ask to better understand these definitions is: what exactly are alloca-
tions? It is easier to think first about a static problem, where allocations are just consumption
bundles. However, in principle, an allocation might encode time and uncertainty. A consump-
tion bundle might be a stream of consumption over time, or a contingent consumption plan over
states of the world. We are simply not making this structure explicit. A deeper discussion of
this point is in Debreu (1959, ch. 2).

Things to read. Properties of preferences are discussed in detail in Mas-Colell et al.
(1995, ch. 3). Exchange economies are introduced in Hildenbrand & Kirman (1976, ch.
2). You can also read Mas-Colell et al. (1995, ch. 16) if you wish, but it moves straight
to production economies. Varian (1992, ch. 17) instead studies exchange economies in
detail. A treatment close to the approach in these notes is in Thomson (2011). A brief
discussion of various Egalitarian Walrasian allocation rules is in Fleurbaey & Maniquet
(2011, ch. 1). Debreu (1959) and Arrow & Hahn (1971) are classic references with
historical value. You can find everything we discuss there.
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7.3 Exercises

Exercise 7.1. Show that convexity in Definition 7.4 is equivalent to the following state-
ment: for every bundle xi ∈ Rℓ

+, both the upper and lower contour sets of xi are convex.

Solution to Exercise 7.1. We show the two directions of the equivalence.
(⇒) Suppose that ≿i is convex. Let xi ∈ Rℓ

+ and consider two bundles x′
i, x

′′
i ∈ Ui(xi).

By definition of upper contour set, we have x′
i ≿i xi and x′′

i ≿i xi. By convexity of ≿i,
for any α ∈ [0, 1], we have

αx′
i + (1− α)x′′

i ≿i xi,

which implies that αx′
i + (1− α)x′′

i ∈ Ui(xi). Thus, Ui(xi) is convex.
Now consider two bundles y′i, y′′i ∈ Li(xi). By definition of lower contour set, we have

xi ≿i y
′
i and xi ≿i y

′′
i . By convexity of ≿i, for any α ∈ [0, 1], we have

xi ≿i αy
′
i + (1− α)y′′i ,

which implies that αy′i + (1− α)y′′i ∈ Li(xi). Thus, Li(xi) is convex.
(⇐) Suppose that for every bundle xi ∈ Rℓ

+, both the upper and lower contour sets
of xi are convex. Let xi, x

′
i, x

′′
i ∈ Rℓ

+ such that x′
i ≿i xi and x′′

i ≿i xi. This means that
x′
i, x

′′
i ∈ Ui(xi).

Exercise 7.2. Show that if a preference relation ≿i is locally non-satiated, then for every
endowment ei and every strictly positive price vector p ∈ Rℓ

++, the Walrasian demand
Di(p, ei) lies on the budget line {xi ∈ Rℓ

+ | p · xi = p · ei}.

Solution to Exercise 7.2. Suppose that ≿i is locally non-satiated. Let ei ∈ Rℓ
+ be an

endowment and p ∈ Rℓ
++ be a strictly positive price vector. Consider a bundle xi ∈

Di(p, ei). By definition of Walrasian demand, we have xi ∈ B(p, ei), which implies that
p · xi ≤ p · ei.

Suppose, for the sake of contradiction, that p · xi < p · ei. Since p is strictly positive,
there exists ε > 0 such that the ball Bε(xi) = {x′

i ∈ Rℓ
+ | ∥x′

i−xi∥ < ε} contains a bundle
x′
i with p · x′

i < p · ei and x′
i ≻i xi, by local non-satiation of ≿i. This contradicts the fact

that xi ∈ Di(p, ei), since x′
i ∈ B(p, ei) and x′

i ≻i xi.
Therefore, it must be that p · xi = p · ei. Thus, the Walrasian demand Di(p, ei) lies

on the budget line {xi ∈ Rℓ
+ | p · xi = p · ei}.
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Lecture 8

First theorem of welfare economics

In this lecture we discuss the first theorem of welfare economics, which states that every
Walrasian equilibrium with transfers is Pareto optimal. We now start seeing proofs that
are a bit more sophisticated.1 In particular, we will make use of proofs by contradiction.
The logic is as follows. We want to prove a statement S. We assume that S is false and
show that this assumption leads to a contradiction: for instance, we derive a conclusion
of the form C and not C, or we obtain a conclusion that contradicts one of the premises
needed for S. Either way, the assumption that S is false cannot be sustained, so S must
be true.

We begin with a preliminary lemma.

Lemma 8.1. Assume that preferences ≿i are locally non-satiated. Let xi ∈ Di(p, ei). If
x′
i ≿i xi, then p · x′

i ≥ p · xi.

Proof. Suppose, to the contrary, that p · x′
i < p · xi. Let

δ =
p · xi − p · x′

i

2
> 0.

By Local non-satiation, for every ε > 0 there exists x′′
i ∈ Rℓ

+ such that ∥x′′
i − x′

i∥ < ε

and x′′
i ≻i x

′
i.

Choose ε small enough so that ∥x′′
i − x′

i∥ < ε implies |p · x′′
i − p · x′

i| < δ. Then

p · x′′
i ≤ p · x′

i + δ < p · xi.

Since xi ∈ Di(p, ei), we have p·xi ≤ p·ei, hence p·x′′
i < p·ei and therefore x′′

i ∈ B(p, ei).
Moreover, x′′

i ≻i x
′
i and x′

i ≿i xi imply x′′
i ≻i xi by transitivity. This contradicts the fact

that xi ∈ Di(p, ei).

And now the main result.

Theorem 8.1. (First theorem of welfare economics) If all preferences in economy
E are locally non-satiated, then every allocation selected by RWT is Pareto optimal. That
is,

x ∈ RWT (E) =⇒ x is Pareto optimal.

Proof. Let E be an economy and suppose that x ∈ RWT (E). Then there exist strictly
positive prices p and transfers (Ti)i such that, for every individual i,

1An immensely valuable resource to learn fundamental proof strategies is Cummings (2021). If you want
to have fun and understand Italian, you can read Lolli (2020).
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xi ∈ Di(p, ei + Ti),

that is, xi is a most preferred bundle in the budget set B(p, ei + Ti).
Suppose, for a contradiction, that x is not Pareto optimal. Then there exists a feasible

allocation x′ such that x′
i ≿i xi for all i, and x′

j ≻j xj for some individual j. By Lemma 8.1,
this implies

p · x′
i ≥ p · xi for all i.

Moreover, for the individual j with x′
j ≻j xj we in fact have p·x′

j > p·xj: if p·x′
j ≤ p·xj,

then x′
j ∈ B(p, ej + Tj), since xj ∈ B(p, ej + Tj), contradicting xj ∈ Dj(p, ej + Tj).

Therefore,

p · x′
j > p · xj for some j.

Summing over all individuals,

∑
i

p · x′
i >

∑
i

p · xi. (*)

On the other hand, local non-satiation implies that each demanded bundle exhausts
the budget, so p · xi = p · (ei + Ti) for all i. Summing and using

∑
i Ti = 0,

∑
i

p · xi =
∑
i

p · (ei + Ti) =
∑
i

p · ei.

Since x′ is feasible,
∑

i x
′
i ≤

∑
i ei, and multiplying by the strictly positive price vector

p gives

∑
i

p · x′
i ≤

∑
i

p · ei =
∑
i

p · xi,

contradicting (∗). Hence no such x′ exists, and x is Pareto optimal.

Before turning to the interpretation of Theorem 8.1, let us discuss why Local non-
satiation is necessary for the theorem to hold. Look at Figure 8.1. Individual 1 has
“thick” indifference curves, so he violates local non-satiation. The allocation x is not
Pareto optimal, since there is another feasible allocation x′ that makes individual 2 strictly
better off without making individual 1 worse off. However, x can still be supported as
a Walrasian equilibrium with transfers at prices p. Thus, without local non-satiation,
Theorem 8.1 fails.
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x′

≿2

p

Figure 8.1: Local non-satiation is necessary for the First Welfare Theorem.

Why can x be supported as a Walrasian equilibrium with transfers in Figure 8.1?

Let us now interpret Theorem 8.1. A classical economic question is how to allocate
resources given information about preferences.2 We might want such an allocation of
resources to satisfy some attractive properties from a normative perspective. One such
property is Pareto optimality. An allocation rule that takes preferences and endowments
as inputs and returns a Pareto optimal allocation as output might therefore be desirable.
However, once one has an allocation rule, one might wonder whether it can be imple-
mented in a decentralised way. A rule that maps preferences and endowments into an
allocation does not, by itself, tell us how to reach that allocation.

Theorem 8.1 tells us that Walrasian equilibrium with transfers implements an al-
location rule that always delivers Pareto optimal allocations. Decentralised individual
optimisation at some prices can therefore lead to desirable allocations from this point of
view. There is a bit more, however. A Walrasian equilibrium with transfers is not just
a mechanism to implement Pareto optimal allocations. It also induces a price for each
good, which individuals can use to trade in order to reach those allocations. Prices may
be interpreted as “values” for goods, where these values depend on the preferences and

2In its most general form, a question of this kind is asked in Arrow (2012), the spark that gave rise to
modern social choice theory.
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endowments of all individuals in the economy. In fact, Debreu (1959) is titled Theory of
Value.

Many more or less sophisticated critiques of economics stem from the idea that it
is inappropriate to view the value of goods as determined by prices. There is a famous
quotation, often misattributed to Oscar Wilde,3 that says: “An economist is someone who
knows the price of everything and the value of nothing”. Of course, there are legitimate
reasons to question whether values should be entirely derived from individual preferences.
But, in the setting we consider here, there is nothing special about prices that is not
ultimately related to preferences or endowments.4

Unfortunately, an allocation rule that delivers Pareto optimal allocations can some-
times be undesirable from other points of view. For instance, it might deliver very unequal
allocations. We might therefore want to complement Pareto optimality with a distribu-
tional requirement. One candidate is envy-freeness, which is closely related to the idea
of equality of opportunity. One way to make this relationship precise is captured in the
following proposition.

Proposition 8.1. Every allocation selected by REW satisfies No-envy. That is,

x ∈ REW (E) =⇒ x satisfies No-envy.

Proof. Let E be an economy and suppose that x ∈ REW (E). By definition of Egalitarian
Walrasian equilibrium, there exists a price vector p ∈ Rℓ

++ such that, for each individual
i,

xi ∈ Di

(
p,

ē

n

)
.

Because all individuals face the same endowment ē
n

and the same price vector p, they
all face the same budget set

B := B
(
p,

ē

n

)
=

{
x′
i ∈ Rℓ

+

∣∣ p · x′
i ≤ p · ē

n

}
.

Fix any individual i. Since xi ∈ Di

(
p, ē

n

)
, xi is a most preferred bundle for i in B.

Therefore,

for all x′
i ∈ B, xi ≿i x

′
i. (8.1)

Now consider any other individual j ̸= i. Since xj ∈ Dj

(
p, ē

n

)
, we have xj ∈ B.

Applying (8.1) to the specific bundle xj yields

3Apparently the original quotation is “[A cynic is] a man who knows the price of everything, and the
value of nothing” from Wilde (1995, p. 55).

4However, sometimes the mere existence of prices, from a physical point of view, induces disgust towards
the commodification of goods that “should not be priced”. As Sophocles (1939, p. 201) puts it: “There’s
nothing in the world so demoralizing as money”. Fleurbaey et al. (2025) studies a class of problems, of
which commodification is one, in a general equilibrium setting, so you are ready to read it!
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xi ≿i xj.

Since i and j ̸= i were arbitrary, it follows that for all i ̸= j,

xi ≿i xj,

which is exactly No-envy. Hence the allocation x satisfies No-envy.

Since any Egalitarian Walrasian equilibrium is also a Walrasian equilibrium with
transfers, take transfers Ti :=

ē
n
− ei, Theorem 8.1 and Proposition 8.1 together imply

that the Egalitarian Walrasian allocation rule delivers allocations that are both Pareto
optimal and satisfy No-envy. Therefore, in this simple setting, requirements of efficiency,
fairness, and incentives are compatible!5

However, the actual endowments ei need not coincide with the egalitarian endowment
ē
n
. We might therefore be interested in understanding when such an allocation rule can

be implemented starting from an arbitrary endowment profile. The second fundamental
theorem of welfare economics, which we discuss in the next lecture, provides conditions
under which this is possible.

Things to read. The proof of Theorem 8.1 in these notes follows Mas-Colell et al.
(1995, pp. 545–550). A version withing exchange economies is in Varian (1992, ch. 17).
A proof of a closely related version of Proposition 8.1 appears in Fleurbaey (2008, p. 46),
which also discusses further properties of allocations satisfying No-envy.

8.1 Exercises

Exercise 8.1. Explain why Proposition 8.1 links envy-freeness to equality of opportunity.
There are at least a couple of things to say here. For instance, do the allocations selected
by the Egalitarian Walrasian allocation rule depend on individuals’ endowments?

Solution to Exercise 8.1. An allocation x selected by the Egalitarian Walrasian allocation
rule is supported as a Egalitarian Walrasian equilibrium at prices p with egalitarian
endowments ē

n
for all individuals. Therefore, individuals face the same budget set B(p, ē

n
).

Since each individual chooses his most preferred bundle in that budget set, no individual
prefers another individual’s bundle to his own. Hence, no individual envies another
individual.

The allocations selected by the Egalitarian Walrasian allocation rule do not depend on
individuals’ actual endowments ei. They depend only on the total endowment ē and the
preferences of individuals. This reflects the idea of equality of opportunity: individuals

5Thomson (2011, p. 405) discusses that the Egalitarian Walrasian allocation rule is also easy to imple-
ment under incomplete information about preferences.
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are given equal resources, the same budget set, to choose from, regardless of their initial
endowments.

Exercise 8.2. In this exercise you should use calculus to compute Walrasian demands and
equilibria. Feel free to use this tool. Consider an exchange economy with two individuals
i ∈ {1, 2} and two goods ℓ ∈ {1, 2}. An allocation is x = (x1, x2) with xi = (x1

i , x
2
i ) ∈ R2

+,
and endowments are ei = (e1i , e

2
i ) ∈ R2

+. Prices are p = (p1, p2) ∈ R2
++ and the budget set

is B(p, ei) = {xi ∈ R2
+ | p · xi ≤ p · ei}.

Assume endowments are

e1 = (1, 0), e2 = (0, 1),

and preferences are represented by Cobb–Douglas utilities with different exponents:

u1(x1) = (x1
1)

α (x2
1)

1−α, u2(x2) = (x1
2)

β (x2
2)

1−β,

where α, β ∈ (0, 1) and α ̸= β.

1. Fix prices p ∈ R2
++. Compute each individual’s Walrasian demand Di(p, ei).

2. Find a Walrasian equilibrium: determine a price vector p ∈ R2
++ and a feasible

allocation x = (x1, x2) such that xi ∈ Di(p, ei) for i = 1, 2.

3. Is the Walrasian equilibrium allocation envy-free? If not, give a condition on (α, β)

under which it becomes envy-free.

Solution to Exercise 8.2. 1. Fix prices p ∈ R2
++. Individual i solves

max
xi∈R2

+

ui(xi) s.t. p · xi ≤ p · ei.

For Cobb–Douglas preferences with α, β ∈ (0, 1), the optimum is interior, as both
goods are desirable, and the budget constraint binds. Write wi := p · ei for wealth.

Agent 1. Consider the Lagrangian

L1(x
1
1, x

2
1, λ1) = (x1

1)
α(x2

1)
1−α + λ1

(
w1 − p1x1

1 − p2x2
1

)
.

The first-order conditions are

∂L1

∂x1
1

= α(x1
1)

α−1(x2
1)

1−α − λ1p
1 = 0,

∂L1

∂x2
1

= (1− α)(x1
1)

α(x2
1)

−α − λ1p
2 = 0,

together with complementary slackness, which here reduces to the binding budget
constraint

p1x1
1 + p2x2

1 = w1.
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Divide the first two FOCs to eliminate λ1:

α(x1
1)

α−1(x2
1)

1−α

(1− α)(x1
1)

α(x2
1)

−α
=

p1

p2
⇐⇒ α

1− α
· x

2
1

x1
1

=
p1

p2
.

Rearranging gives a convenient expression of the optimal ratio:

x2
1 =

1− α

α
· p

1

p2
x1
1.

Substitute this into the budget constraint:

p1x1
1 + p2

(
1− α

α
· p

1

p2
x1
1

)
= w1 ⇐⇒ p1x1

1

(
1 +

1− α

α

)
= w1.

Since 1 + 1−α
α

= 1
α
, we obtain

p1x1
1 ·

1

α
= w1 ⇐⇒ x1

1 =
αw1

p1
.

Finally, plug back into the ratio, or directly into the budget constraint, to get

x2
1 =

(1− α)w1

p2
.

Hence the Walrasian demand of agent 1 is

D1(p, e1) =
(αw1

p1
,
(1− α)w1

p2

)
.

Agent 2. The calculation is identical. The Lagrangian is

L2(x
1
2, x

2
2, λ2) = (x1

2)
β(x2

2)
1−β + λ2

(
w2 − p1x1

2 − p2x2
2

)
,

and the FOCs yield

D2(p, e2) =
(βw2

p1
,
(1− β)w2

p2

)
.

In our economy e1 = (1, 0) and e2 = (0, 1), hence w1 = p·e1 = p1 and w2 = p·e2 = p2.
Substituting,

D1(p, e1) =
(
α, (1− α)

p1

p2

)
, D2(p, e2) =

(
β
p2

p1
, 1− β

)
.

2. A Walrasian equilibrium is a price vector p ∈ R2
++ and a feasible allocation x =

(x1, x2) such that xi ∈ Di(p, ei) and markets clear.

Market clearing for good 1 requires

x1
1 + x1

2 = 1.
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Using the demands from part (1),

α + β
p2

p1
= 1 ⇐⇒ p2

p1
=

1− α

β
.

Thus equilibrium prices are determined only up to a positive normalization; what
matters is the relative price. A convenient choice is

p = (p1, p2) = (β, 1− α),

which satisfies p2

p1
= 1−α

β
.

Given this relative price, the equilibrium allocation is obtained by plugging into
demands:

x1 = D1(p, e1) =
(
α, (1− α)

p1

p2

)
=

(
α, (1− α)

β

1− α

)
= (α, β),

and

x2 = D2(p, e2) =
(
β
p2

p1
, 1− β

)
=

(
β
1− α

β
, 1− β

)
= (1− α, 1− β).

Feasibility is immediate:

x1 + x2 = (α + 1− α, β + 1− β) = (1, 1) = e1 + e2.

3. Envy-freeness means that no one strictly prefers the other person’s bundle:

u1(x1) ≥ u1(x2) and u2(x2) ≥ u2(x1).

Here x1 = (α, β) and x2 = (1− α, 1− β), so these inequalities become

ααβ1−α ≥ (1− α)α(1− β)1−α,

(1− α)β(1− β)1−β ≥ αββ1−β.

Equivalently, taking logs, one can write them as two linear inequalities in ln α
1−α

and ln β
1−β

.

In general the Walrasian equilibrium allocation need not be envy-free. A simple
and sharp-looking sufficient condition that guarantees envy-freeness is

α + β = 1.

Indeed, if β = 1− α, then

x1 = (α, 1− α), x2 = (1− α, α).

Agent 1 puts weight α on good 1 and 1 − α on good 2, so he weakly prefers the
bundle that loads more on good 1 precisely when α ≥ 1

2
; but in that case x1 is

exactly the bundle with more of good 1. Symmetrically, agent 2 has exponent
β = 1 − α, so he weakly prefers the bundle that loads more on good 1 precisely
when 1 − α ≥ 1

2
, and in that case x2 is exactly the bundle with more of good 1.

Hence neither envies the other.

77



References

Arrow, K. J. (2012). Social choice and individual values (3rd ed.). New Haven, CT: Yale
University Press. 72

Cummings, J. (2021). Proofs: A Long-Form Mathematics Textbook. Independently
published. 70

Debreu, G. (1959). Theory of value: An axiomatic analysis of economic equilibrium
(Vol. 17). Yale University Press. 73

Fleurbaey, M. (2008). Fairness, responsibility, and welfare. Oxford: Oxford University
Press. 74

Fleurbaey, M., Kanbur, R., & Snower, D. (2025). Efficiency and equity in a socially-
embedded economy. Economic Theory , 79 (1), 1–56. 73

Lolli, G. (2020). QED. Fenomenologia della dimostrazione (4th ed.). Torino: Bollati
Boringhieri. 70

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. Oxford
university press New York. 74

Sophocles. (1939). The antigone of sophocles: An english version by dudley fitts and
robert fitzgerald (D. Fitts & R. Fitzgerald, Trans.). New York: Harcourt, Brace and
Company. 73

Thomson, W. (2011). Fair allocation rules. In Handbook of social choice and welfare
(Vol. 2, pp. 393–506). Elsevier. 74

Varian, H. R. (1992). Microeconomic analysis (3rd ed.). New York: W. W. Norton &
Company. 74

Wilde, O. (1995). Lady windermere’s fan. Penguin. 73

78



Lecture 9

Second theorem of welfare economics

We now turn to the second theorem of welfare economics, which establishes that, under
certain conditions, any Pareto optimal allocation can be implemented as a Walrasian equi-
librium with transfers. The proof relies on convexity of preferences and uses a geometric
argument based on supporting hyperplanes. Supporting and separating hyperplane argu-
ments are common in economic theory.1 In particular, we will invoke the specific result
stated below.2 Recall that the interior of a set X ⊂ Rℓ, denoted intX, is the set of all
points x ∈ X for which there exists an open ball around x that is fully contained in X.

Theorem 9.1. (Supporting hyperplane) Let X ⊂ Rℓ be a convex set and let x /∈ intX.
Then there exists p ∈ Rℓ with p ̸= 0 such that

p · x ≥ p · y for all y ∈ X.

In words, there is a hyperplane with normal vector p passing through x such that X

lies entirely in the weak half-space on one side of it. Figure 9.1 illustrates the theorem in
two dimensions.

X

y

x

p

x1

x2

Figure 9.1: A supporting hyperplane through x for the convex set X.

1As an example, a proof of the expected utility representation in Lecture 2 using a separation argument
is in Gilboa (2009, ch. 8.3.3).

2If you are interested, a nice source is Rockafellar (1970, ch. 11).
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The last ingredient we need is a strengthening of .

Definition 9.1. A preference relation ≿i on Rℓ
+ is monotonic if for every xi, x

′
i ∈ Rℓ

+

with x′
i ≥ xi and x′

i ̸= xi, we have x′
i ≻i xi.

A monotonic preference relation is one where (holding everything else fixed) more of
any good is always strictly preferred to less. Monotonicity implies local non-satiation,
but the converse is not true.

We can now state and prove the second fundamental theorem of welfare economics.

Theorem 9.2. (Second welfare theorem) If all preferences in the economy E are
monotonic, convex, and continuous, and each individual has a strictly positive endowment
ei ∈ Rℓ

++, then every interior Pareto optimal allocation x ∈ Rℓn
++ can be supported as a

Walrasian equilibrium with transfers. That is,

x is Pareto optimal and x ∈ Rℓn
++ =⇒ x ∈ RWT (E).

Proof. Say we want to implement the interior Pareto optimal allocation x. Define trans-
fers Ti by

Ti = xi − ei for each i.

Feasibility of x implies
∑

i xi =
∑

i ei, hence
∑

i Ti = 0, so (Ti)i is a feasible vector
of lump–sum transfers. We have to find strictly positive prices p such that for each
individual, endowed with ei + Ti = xi, the bundle xi is in the Walrasian demand of i:

xi ∈ Di(p, ei + Ti) for each i.

Step 1: “Strictly better–than” sets. For each individual i, let

U
i
(xi) := {x′

i : x
′
i ≻i xi}

denote the strict upper contour set at xi. By continuity and convexity of ≿i this set
is convex, and xi /∈ U

i
(xi). Define the set of aggregate improvements

U(x) =
∑
i

U
i
(xi) :=

{
x′

∣∣∣ x′ =
∑
i

x′
i with x′

i ∈ U
i
(xi) for each i

}
.

So U(x) is the set of all aggregate bundles that can be obtained by letting each
individual choose a bundle strictly preferred to her allocation in x. Since it is the sum
of convex sets, U(x) is convex. Pareto optimality of x says that there is no feasible
allocation x′ = (x′

i)i with x′
i ≻i xi for all i. Equivalently,

∑
i

xi /∈ U(x).
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Step 2: A supporting price hyperplane. We have a convex set U(x) and a point∑
i xi outside it. By Theorem 9.1, there exists a nonzero vector p such that3

p · x′ ≥ p ·
(∑

i

xi

)
for all x′ ∈ U(x).

In particular, for any profile (x′
i)i with x′

i ∈ U
i
(xi) for all i,

∑
i

p · x′
i = p ·

(∑
i

x′
i

)
≥ p ·

(∑
i

xi

)
=

∑
i

p · xi. (9.1)

We need to show that prices are strictly positive and that each xi is optimal in
individual i’s budget set at prices p and income p · (ei + Ti) = p · xi.

Step 3: Nonnegativity of supporting prices. Let ω :=
∑

i xi denote the aggregate
bundle at the Pareto optimal allocation. For each good k ∈ {1, . . . , ℓ}, let ek ∈ Rℓ be the
k-th unit vector.

Consider the allocation x̂ defined by

x̂i := xi +
1

n
ek for each i.

By monotonicity, x̂i ≻i xi for every i, hence
∑

i x̂i = ω + ek ∈ U(x). Applying
Equation (9.1) to the profile (x̂i)i gives

p · (ω + ek) ≥ p · ω,

hence p · ek ≥ 0, i.e. pk ≥ 0. Since k was arbitrary, p ∈ Rℓ
+.

Step 4: Any strictly preferred bundle must cost strictly more. Fix an individual
j. We claim that if x′

j ≻j xj, then

p · x′

j > p · xj.

Step 4(a): weak inequality. Suppose x
′
j ≻j xj. By continuity of ≿j, there exists

θ ∈ (0, 1) close enough to 0 such that (1− θ)x
′
j ≻j xj. Define a profile x′ by

x′
j := (1− θ)x

′

j, x′
i := xi +

θ

n− 1
x

′

j for all i ̸= j.

By monotonicity, for each i ̸= j we have x′
i ≻i xi, and by construction x′

j ≻j xj.
Hence

∑
i x

′
i ∈ U(x), and therefore (9.1) implies

p ·
(∑

i

x′
i

)
≥ p ·

(∑
i

xi

)
.

But
∑

i x
′
i = x

′
j +

∑
i ̸=j xi, so cancelling

∑
i ̸=j p · xi yields

3Reversing the inequality does not affect Theorem 9.1.
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p · x′

j ≥ p · xj.

Step 4(b): strict inequality. Assume for contradiction that p · x′
j = p · xj. Since

x
′
j ≻j xj and preferences are continuous, we can pick α ∈ (0, 1) close enough to 1 so that

αx
′
j ≻j xj. Applying Step 4(a) to αx

′
j gives

p · (αx′

j) ≥ p · xj.

Using p · x′
j = p · xj, this becomes α p · xj ≥ p · xj, hence p · xj ≤ 0. But xj ∈ Rℓ

++ and
p ∈ Rℓ

+ with p ̸= 0 imply p · xj > 0, a contradiction. Therefore p · x′
j > p · xj.

Step 5: Strict positivity and individual optimality. Strict positivity. Fix any
good k. For any ε > 0, monotonicity implies xj + εek ≻j xj. By Step 4,

p · (xj + εek) > p · xj ⇒ εpk > 0 ⇒ pk > 0.

Since k was arbitrary, p ∈ Rℓ
++.

Optimality. Fix i. Suppose there exists x′
i ∈ Rℓ

+ with p · x′
i ≤ p · xi and x′

i ≻i xi.
This contradicts Step 4, which says x′

i ≻i xi ⇒ p · x′
i > p · xi. Hence no strictly preferred

bundle is affordable at income p · xi, so xi is optimal in the budget set:

xi ∈ Di(p, ei + Ti).

Conclusion. We have found strictly positive prices p ∈ Rℓ
++ and transfers (Ti)i such

that

xi ∈ Di(p, ei + Ti) for all i.

Hence x is a Walrasian equilibrium with transfers: x ∈ RWT (E). Since x was an
arbitrary interior Pareto optimal allocation, the theorem follows.

Let us now take stock of what we have achieved so far. The first fundamental theorem
of welfare economics, Theorem 8.1, says that every Walrasian equilibrium allocation is
Pareto optimal. The second fundamental theorem of welfare economics, Theorem 9.2,
says that, under stronger assumptions, every interior Pareto optimal allocation can be
implemented as a Walrasian equilibrium with transfers. Together, these two theorems
establish a strong link between competitive equilibria and efficiency.

Things to read. This lecture is based on Varian (1992, ch. 17). For a treatment that
includes production, see Mas-Colell et al. (1995, pp. 545–550).
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9.1 Exercises

Exercise 9.1. If one assumes the existence of a Walrasian equilibrium with transfers, an
indirect proof of the second welfare theorem can be given. Prove the following statement.
Suppose that all preferences in the economy are locally non-satiated and that x∗ is a
Pareto optimal allocation. Suppose further that a Walrasian equilibrium exists when
endowments are ei = x∗

i for all i. Then x∗ can be supported as a Walrasian equilibrium
allocation with transfers. (Hint: if you are stuck, see Varian (1992, p. 329).)

References

Gilboa, I. (2009). Theory of decision under uncertainty (Vol. 45). Cambridge university
press. 79

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. Oxford
university press New York. 82

Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
79

Varian, H. R. (1992). Microeconomic analysis (3rd ed.). New York: W. W. Norton &
Company. 82, 83

83



Lecture 10

Existence of competitive equilibria

We have defined Walrasian (competitive) equilibrium and discussed its properties. In this
lecture, we will prove that a competitive equilibrium exists under certain assumptions
on preferences. We assume preferences are continuous, strictly convex, and strongly
monotone. These are strengthening of assumptions we have made before.

Definition 10.1. A preference relation is strongly monotone if for all x, y ∈ RL
+ such

that x ≥ y and x ̸= y, we have x ≻ y.

Definition 10.2. A preference relation is strictly convex if for all x, y, z ∈ RL
+ such

that y ≻ x and z ≻ x, we have for all α ∈ (0, 1), αy + (1 − α)z ≻ x. Equivalently, all
upper contour sets are strictly convex sets.

If a preference relation is continuous, strictly convex, and strongly monotone, then
the Walrasian demand is single-valued and can therefore be viewed as a function. We
can then define the excess demand function as follows.

Definition 10.3. The excess demand function of and individual i with a single-valued
Walrasian demand function Di(p, ei) is given by

zi(p, ei) = Di(p, ei)− ei.

From the individual excess demand functions, we can construct the aggregate excess
demand function.

z(p) =
∑
i

zi(p).

The excess demand function maps prices to allocations. Under our assumptions on
preferences, Walrasian equilibrium can be characterised through the excess demand func-
tion as follows.

Proposition 10.1. If individual preferences ≿i are continuous, strictly convex, and
strongly monotone for each i, then an allocation x is a Walrasian equilibrium if and
only if there exists a price vector p such that z(p) = 0.

The excess demand function has several important properties that we will use to prove
the existence of a competitive equilibrium.

Proposition 10.2. If individual preferences ≿i are continuous, strictly convex, and
strongly monotone for each i, then the aggregate excess demand function z(p) satisfies
the following properties:
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1. z(p) is homogeneous of degree zero:z(αp) = z(p) for all α > 0;

2. z(p) satisfies Walras’ law: p · z(p) = 0 for all strictly positive prices p;

3. z(p) is continuous;

4. there is an s > 0 such that for all goods ℓ and prices p, zℓ(p) > −s;

5. if pn is a sequence of prices converging to p with pℓ = 0 for some good ℓ, then
max{z1(pn), . . . , zL(pn)} → +∞.

The existence result we study here relies on Kakutani’s fixed–point theorem.

Theorem 10.1. (Kakutani’s fixed point) Let A ⊆ RL be a non-empty, compact,
and convex set, and f : A ⇒ A be an upper hemicontinuous correspondence such that
f(x) ⊆ A is non-empty and convex for each x ∈ A. Then, f has a fixed point, i.e., there
exists x ∈ A such that x ∈ f(x).

The existence result is the following.

Proposition 10.3. If the aggregate excess demand function z(p) satisfies the properties
in Proposition 10.2, then there exists a price vector p such that z(p) = 0. Therefore, in
such economy a Walrasian equilibrium exists.

Proof. Check Mas-Colell et al. (1995, p. 586).

Things to read. This lecture is based on Mas-Colell et al. (1995, pp. 578-587).

10.1 Exercises

Exercise 10.1. Show that if demand equals supply in k− 1 markets, then it also equals
supply in the k-th market. (Hint: Use Walras’ law.)

Solution to Exercise 10.1. Let z(p) = (z1(p), z2(p), . . . , zk(p)) be the aggregate excess
demand function, where zℓ(p) = Dℓ(p) − Sℓ(p) for each good ℓ. Suppose that for prices
p, we have zℓ(p) = 0 for all ℓ = 1, 2, . . . , k− 1. This means that demand equals supply in
the first k − 1 markets.

By Walras’ law, we know that

p · z(p) =
k∑

ℓ=1

pℓzℓ(p) = 0.

Since zℓ(p) = 0 for ℓ = 1, 2, . . . , k − 1, the above equation simplifies to

pkzk(p) = 0.

Given that prices are strictly positive, pk > 0, it follows that zk(p) = 0. Therefore,
demand equals supply in the k-th market as well.
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Exercise 10.2. Prove Proposition 10.1.

Solution to Exercise 10.2. (⇒) Suppose (x∗, p∗) is a Walrasian equilibrium. By defini-
tion, for each individual i, we have x∗

i = Di(p
∗, ei). Therefore, the excess demand for

individual i at prices p∗ is

zi(p
∗, ei) = Di(p

∗, ei)− ei = x∗
i − ei.

Summing over all individuals, we get

z(p∗) =
∑
i

zi(p
∗, ei) =

∑
i

(x∗
i − ei) =

∑
i

x∗
i −

∑
i

ei.

Since the total allocation equals the total endowment in equilibrium, we have
∑

i x
∗
i =∑

i ei. Thus,
z(p∗) = 0.

(⇐) Conversely, suppose there exists a price vector p∗ such that z(p∗) = 0. This
implies ∑

i

zi(p
∗, ei) = 0.

Therefore, ∑
i

(Di(p
∗, ei)− ei) = 0,

which leads to ∑
i

Di(p
∗, ei) =

∑
i

ei.

This means that the total demand equals the total endowment at prices p∗. For each
individual i, let x∗

i = Di(p
∗, ei). Then, the allocation x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) satisfies the

market-clearing condition. Since each individual chooses their most preferred bundle in
their budget set at prices p∗, the pair (x∗, p∗) constitutes a Walrasian equilibrium.

Exercise 10.3. Prove property 1. of the excess demand function in Proposition 10.2.

Solution to Exercise 10.3. To prove that the excess demand function z(p) is homogeneous
of degree zero, we need to show that for any positive scalar α > 0,

z(αp) = z(p).

By definition, the excess demand function for individual i is given by

zi(p, ei) = Di(p, ei)− ei,

where Di(p, ei) is the Walrasian demand function.
The Walrasian demand function Di(p, ei) is homogeneous of degree zero in prices.

This means that for any positive scalar α > 0,

Di(αp, ei) = Di(p, ei).
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Using this property, we can compute the excess demand at prices αp:

zi(αp, ei) = Di(αp, ei)− ei = Di(p, ei)− ei = zi(p, ei).

Summing over all individuals, we have

z(αp) =
∑
i

zi(αp, ei) =
∑
i

zi(p, ei) = z(p).

Therefore, we conclude that
z(αp) = z(p),

which shows that the excess demand function z(p) is homogeneous of degree zero.
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