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1 Review Questions

c. An improvement in extractive technology always increases fish production if

fishing is socially optimal.

Answer

True: From you notes (page 9), the expression for the total harvest in the social planner

solution is H ∗
O = rK

4 (1 − ( c
pαK )

2
). You can see that an increase in α will augment total

harvest even without taking derivatives.

Question: Don’t you think the comparison between this question and the solution to point
b . is interesting?

d . An improvement in extractive technology is always a bad thing from an

environmental point of view.

Answer

True: We can check from the equilibrium expression of the stock of natural resources
S ∗ = c

pα
. If α increase then the stock of natural resources decreases.

3 The Dynamics of a Fish Population with Threshold

c. What is the natural growth of the fish population at t if S(t) = 0?  Is it also an

equilibrium?

To answer this question we just need to evaluate the growth rate in the point S(t) = 0 .

N(0) = r(0 − T )(1 − 0) = −rT

We should have expected this result, as we know that T  is a threshold for the fish to grow and
S(t) = 0 < T . Since the computed growth rate is negative and since the stock can not go lower
than 0, we conclude that S(t) = 0 is also a steady state. Notice that S(t) is the point in which
the growth rate crosses the y axis, as shown in the picture below.



Figure 1: Graph of the growth rate of fishes for T = 1, K = 10 and r = 1. Notice that
−rT = −1(1) = −1, where the growth rate is negative and the stock is 0.

Question: Is this new steady state stable?

d . What is the maximum number of fish that can be caught per unit of time such

that the fish population is constant?  This is also called the maximum sustained

yield . What is the fish stock S(t) at this value?

To answer this question we must ask when the growth rate of fishes is the highest. This would
allow us to capture the maximum number of fishes every time t and then obtain for t + ε the
greatest amount of growth so that we can always maximise our catches. Hence, we must
maximise the growth rate of fishes with respect to the stock. We already have the derivative. To
check for the maximum we need to find the value of S(t) for which the derivative is equal to 0.

Now that we have the stock of fishes that maximises growth, we can ask by how much fish
grows for this value of the stock. Of course, to answer this question we just need to plug the
value we just found in the growth rate.
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This expression tells us by how much fish we can catch for growth to always be at its
maximum.

e . Graph the fish growth function S(t). Place all the elements previously computed

on the graph .

We already did a big part of the graph, the one below has also the answers to the last question.

Figure 2: Graph of the growth rate of fishes for T = 1, K = 10 and r = 1. Here
S ∗(t) = 10+1

2 = 5.5 and N(S ∗(t)) = 92

40 ≈ 2.

f . If there are B boats catching fishes , their total catches are H(t) = αBS(t). The net

growth rate (the law of motion)  of the stock is Ṡ(t) = N(t) − H(t). With B boats in

the ocean , what is (are)  the steady-state population(s)  of fish?

First, notice that Ṡt is just notation for ∂S(t)
∂t , the derivative of the stock of fish with respect to

time. It is the equivalent of the law of motion of the Solow - Swan growth model, so you should
treat it exactly as we did with that model. This observation helps us answering this question. In
fact, the steady state population of fish is characterised by setting its growth rate equal to 0,
which is the same as saying that N(t) = H(t) − N(t) = 0 ⟹ H(t) = (t) . We are looking for
solutions of a quadratic equation, hence I rearrange terms to employ the classical formula.

( )



This is a second order degree equation of which we have to find the roots by the usual
formula. There are two solutions that we label SU  and SS  (you will soon see why).
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These are the two steady state populations of fish.

g . Graph the dynamics of the stock with resource extraction and identify the

equilibrium population(s)  of fish . Show with arrows how population dynamics

pushes S to increase or decrease .

Here the picture where I added the solutions computed in the previous point. Notice that here
the growth rate is given by the difference N(t) − H(t). Hence, to check the stability of steady
states you have to see which one is above the other. Consider SS  in the picture, as an example.
If you perturb it towards the right (i.e. SS + ε), you see that H(t) is greater than N(t), hence
Ṡ(t) is negative and we get back to SS . By performing the same reasoning for any perturbation
you can easily see that SU  is unstable while SS  is stable.
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Figure 3: Same graph as before with SU  and SS . Here I picked α = 1
8  and B = 4.

h . Is there an intensity of fishing (αB) so high that no sustainable fishing is

possible?  What is it?

To answer this question it is enough to notice that if you increase αB by a lot then the line
αBS(t) will not cross N(S(t)) anymore, which means that no sustainable fishing is possible.
This will happen when there is no solution to the previous second degree equation, that is
when the quantity below the square root is negative (imaginary solution). Therefore we just
have to check when this condition is satisfied. We search again for the solutions of a quadratic
equation in αB.

If you perform the same operation in the plus (+) case you will find that αB < r(1 + √ T
K )

2

,

hence we obtain that no sustainable fishing is possible when

r(1 − √ T
K )

2

< αB < r(1 + √ T
K )

2

. Just as a remark, notice that in the numerical example

( αBK

r
− K − T)

2

− 4TK < 0

±( αBK

r
− K − T) < √4TK

αBK

r
> T + K − 2√KT In the minus (-) case

αB >
r

K
(T + K − 2√KT)

αB >
r

K
(√T − √K)

2

αB > r(
√K

√K
−

√T

√K
)

2

αB > r(1 − √ T

K
)

2



from which I plotted the graph this condition is satisfied and therefore we have the two
solutions.

Question: Can you guess what happens if αB > r(1 + √ T
K
)

2

?

Question: Can you think about other methods to do this point?

i. The pro fit from a boat is π(t) = pαS(t) − c. If there is free entry, fishing boats will

enter as long as pro fits are positive . What is the free market equilibrium value of

the stock S ∗
F  in the steady state .

If boats will continue to enter as long as profits are positive, then they will stop when profits
are 0. Therefore, as in class, to find the free market equilibrium value of S(t) we just need to
check when this condition is satisfied.

π(t) = 0 ⇔ pαS ∗
F − c = 0 ⇔ S ∗

F =
c

pα

However, notice that in class we had T = 0, and since c
pα  is always weakly greater than 0 we

never had any problem. In this case, if c
pα < T  the growth is negative and the stock goes to 0.


