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2 The Malthusian Regime

d. For the rest of the exercise, we assume a; =8,=0, fy =Bn =05, ay =1 and
am = a > 0. What are the steady-state levels for this configuration of parameters?

I more or less computed them in the graph, but [ assumed a specific value for «, let's do it
again. We have Y* = oy + By, P* =1+ 0P* = 1. As for y* and P*:
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e. Show that the model dynamics can be summarized by a first-order difference
equation in P; (of the type Py = f(P;), with f some function that you need to find;
you can also look for an equation of the type AP, = g(P;) with g some function to
find, if it is easier for you to do so).

This question is a very involved way of asking: what are the time dynamics of P;? You know
from your lecture notes that P = [b(y;) — m(y:)|P;. However, we are in discrete time here, as
the question asks for a difference equation (not differential), therefore in this case P is
substituted by P;,; — P;. We just have to work out the expression above and plug values for

the parameters.

Py — Py = [b(y:) — m(ys)| P
= [%_‘—/Bbyt_am"'_ﬂmyt]Pt since o = 0

= [(By + Bm)y: — a| P, since o, = o
= [y — P, since By + B,, = 1
Ly s
=|p T by —a| P substituting y;(P;)
t
1 .
= [F_Q}Pt since o, = 1 and 8, = 0
t



f. Study the convergence of population to its steady state starting from an initial
value of population P, close to 0 for the following values of a: (i) 0 < a <1,
(1)) a=1, (1id) 1< a<2.

This question basically asks you to study the dynamics of population for different values of a. It
is more or less about plugging numbers. Let's start from ¢ = 1 and see what the dynamics look
like. Since 1 — « is a bit uncomfortable I substitute it with v =1 — a. Let's start easy and

substitute numbers time by time.

Pr=~4Py+1
PQZ’)/Pl-I-l
=Py +1)y+1
=7’Py+v+1
Py =~4P,+1

=(y*Po+y+1)y+1
=y’Po+7y +y+1

You see the pattern. By thinking a little bit you should realise that we can express P; in the
following way:

t—1
P(y)=7'Po+ ) 7°
s=0
For ¢t — oo, by the rules of power series, we have:
o0
Pu(y) =P+ 7°
s=0
o 1
L=y

We are ready to evaluate the convergence. The following table gives a relationship between

1—aand~.
| o« i
(2) 0<a<150<7<1
(1) 1 i 0

(@) | 1<a<2i-1<y<0

Case (#1) is the easiest. If ¥ = 0 then P; = 1 for any ¢. Population is fixed since the beginning, so

in some sense we already converged from the start to 1.

In case (i) we have 0 <y < 1. If we have no clue we can take one number and see what
happens. Let's try v = 0.5. We have the following series (assuming P, is close to 0):



Pr=05FP+1~1
Py=05(1)+1=15

Py = 0.5(1.5)+1=1.75
P, =0.5(1.75) + 1 = 1.875
P; — 1.9375

Ps = 1.96875

In the following picture you can see the series graphically:
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Figure 1: Series with v = 0.5.

You can see where we are going. We can immediately compute P, from the expression above

(remember that for any —1 < v < 1 we have that v = 0):

1 1
P..(0.5) = 0P, _ L _>
(0.5) "t T 05 5

What we conclude is that for a value of o between 0 and 1 population grows, slower at each

step, and eventually reaches a steady state level (different for different values of 7).

As for case (iii) , with —1 < v < 0, we use the same strategy, namely plugging numbers for the
specific value v = —0.5. The series looks like this:

P =-05P+1~1
P,=-05(1)+1=05

Py =—0.5(0.5) +1=0.75
Py = —0.5(0.75) + 1 = 0.625

P; = 0.6875
P; = 0.65625

P7; = 0.671875

As before, I plotted the series:



2
P
1 ®
e ® - -® - _—9-—-@ —-
®
@
0 1 2 3 4 5 G 7
L

Figure 2: Series with v = —0.5.

As you can see the series here goes up and down, it is not monotonic in its growth, contrary to

the previous case. However, we can see where it converges to:

1 1 i}
Po(—0.5) = 0P, =~ =06
(-05) T T o) 15

Interestingly, notice that the term P, has in both case no role in determining the convergence,

only shaped by ~.



