2 The Malthusian Regime

d. For the rest of the exercise, we assume $\alpha_{b}=\beta_{y}=0, \beta_{b}=\beta_{m}=0.5, \alpha_{y}=1$ and $\alpha_{m}=\alpha>0$. What are the steady-state levels for this configuration of parameters?

I more or less computed them in the graph, but I assumed a specific value for α, let's do it again. We have $Y^{*}=\alpha_{y}+\beta_{y} P^{*}=1+0 P^{*}=1$. As for y^{*} and P^{*} :

$$
\begin{gathered}
y^{*}=\frac{\alpha_{m}-\alpha_{b}}{\beta_{b}+\beta_{m}}=\frac{\alpha}{1}=\alpha \\
P^{*}=\frac{\alpha_{y}\left(\beta_{m}+\beta_{b}\right)}{\alpha_{m}-\alpha_{b}-\beta_{y}\left(\beta_{b}+\beta_{m}\right)}=\frac{1}{\alpha}
\end{gathered}
$$

So $P^{*}=\frac{1}{\alpha}, y^{*}=\alpha$ and $Y^{*}=1$.
e. Show that the model dynamics can be summarized by a first-order difference equation in P_{t} (of the type $P_{t+1}=f\left(P_{t}\right)$, with f some function that you need to find; you can also look for an equation of the type $\Delta P_{t}=g\left(P_{t}\right)$ with g some function to find, if it is easier for you to do so).

This question is a very involved way of asking: what are the time dynamics of P_{t} ? You know from your lecture notes that $\dot{P}=\left[b\left(y_{t}\right)-m\left(y_{t}\right)\right] P_{t}$. However, we are in discrete time here, as the question asks for a difference equation (not differential), therefore in this case \dot{P} is substituted by $P_{t+1}-P_{t}$. We just have to work out the expression above and plug values for the parameters.

$$
\begin{array}{rlr}
P_{t+1}-P_{t} & =\left[b\left(y_{t}\right)-m\left(y_{t}\right)\right] P_{t} & \\
& =\left[\not y_{b}+\beta_{b} y_{t}-\alpha_{m}+\beta_{m} y_{t}\right] P_{t} & \text { since } \alpha_{b}=0 \\
& =\left[\left(\beta_{b}+\beta_{m}\right) y_{t}-\alpha\right] P_{t} & \text { since } \alpha_{m}=\alpha \\
& =\left[y_{t}-\alpha\right] P_{t} & \text { since } \beta_{b}+\beta_{m}=1 \\
& =\left[\frac{\alpha_{y}}{P_{t}}+b_{y}-\alpha\right] P_{t} & \text { substituting } y_{t}\left(P_{t}\right) \\
& =\left[\frac{1}{P_{t}}-\alpha\right] P_{t} & \text { since } \alpha_{y}=1 \text { and } \beta_{y}=0 \\
P_{t+1}-P_{t} & =1-\alpha P_{t} & \\
P_{t+1} & =P_{t}(1-\alpha)+1 &
\end{array}
$$

f. Study the convergence of population to its steady state starting from an initial value of population P_{0} close to 0 for the following values of α : (i) $0<\alpha<1$, (ii) $\alpha=1$, (iii) $1<\alpha<2$.

This question basically asks you to study the dynamics of population for different values of α. It is more or less about plugging numbers. Let's start from $t=1$ and see what the dynamics look like. Since $1-\alpha$ is a bit uncomfortable I substitute it with $\gamma=1-\alpha$. Let's start easy and substitute numbers time by time.

$$
\begin{aligned}
P_{1} & =\gamma P_{0}+1 \\
P_{2} & =\gamma P_{1}+1 \\
& =\left(\gamma P_{0}+1\right) \gamma+1 \\
& =\gamma^{2} P_{0}+\gamma+1 \\
P_{3} & =\gamma P_{2}+1 \\
& =\left(\gamma^{2} P_{0}+\gamma+1\right) \gamma+1 \\
& =\gamma^{3} P_{0}+\gamma^{2}+\gamma+1
\end{aligned}
$$

You see the pattern. By thinking a little bit you should realise that we can express P_{t} in the following way:

$$
P_{t}(\gamma)=\gamma^{t} P_{0}+\sum_{s=0}^{t-1} \gamma^{s}
$$

For $t \rightarrow \infty$, by the rules of power series, we have:

$$
\begin{aligned}
P_{\infty}(\gamma) & =\gamma^{\infty} P_{0}+\sum_{s=0}^{\infty} \gamma^{s} \\
& =\gamma^{\infty} P_{0}+\frac{1}{1-\gamma}
\end{aligned}
$$

We are ready to evaluate the convergence. The following table gives a relationship between $1-\alpha$ and γ.

	α	γ
(i)	$0<\alpha<1$	$0<\gamma<1$
$(i i)$	1	0
$($ iii $)$	$1<\alpha<2$	$-1<\gamma<0$

Case ($i i$) is the easiest. If $\gamma=0$ then $P_{t}=1$ for any t. Population is fixed since the beginning, so in some sense we already converged from the start to 1 .

In case (i) we have $0<\gamma<1$. If we have no clue we can take one number and see what happens. Let's try $\gamma=0.5$. We have the following series (assuming P_{0} is close to 0):

$$
\begin{aligned}
& P_{1}=0.5 P_{0}+1 \approx 1 \\
& P_{2}=0.5(1)+1=1.5 \\
& P_{3}=0.5(1.5)+1=1.75 \\
& P_{4}=0.5(1.75)+1=1.875 \\
& P_{5}=1.9375 \\
& P_{6}=1.96875
\end{aligned}
$$

$$
\vdots
$$

In the following picture you can see the series graphically:

Figure 1: Series with $\gamma=0.5$.
You can see where we are going. We can immediately compute P_{∞} from the expression above (remember that for any $-1<\gamma<1$ we have that $\gamma^{\infty}=0$):

$$
P_{\infty}(0.5)=0 P_{0}+\frac{1}{1-0.5}=\frac{1}{0.5}=2
$$

What we conclude is that for a value of α between 0 and 1 population grows, slower at each step, and eventually reaches a steady state level (different for different values of γ).

As for case (iii), with $-1<\gamma<0$, we use the same strategy, namely plugging numbers for the specific value $\gamma=-0.5$. The series looks like this:

$$
\begin{aligned}
& P_{1}=-0.5 P_{0}+1 \approx 1 \\
& P_{2}=-0.5(1)+1=0.5 \\
& P_{3}=-0.5(0.5)+1=0.75 \\
& P_{4}=-0.5(0.75)+1=0.625 \\
& P_{5}=0.6875 \\
& P_{6}=0.65625 \\
& P_{7}=0.671875
\end{aligned}
$$

As before, I plotted the series:

Figure 2: Series with $\gamma=-0.5$.
As you can see the series here goes up and down, it is not monotonic in its growth, contrary to the previous case. However, we can see where it converges to:

$$
P_{\infty}(-0.5)=0 P_{0}+\frac{1}{1-(-0.5)}=\frac{1}{1.5}=0 . \overline{6}
$$

Interestingly, notice that the term P_{0} has in both case no role in determining the convergence, only shaped by γ.

