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2 The Malthusian Regime

d . For the rest of the exercise , we assume αb = βy = 0, βb = βm = 0.5, αy = 1 and

αm = α > 0. What are the steady-state levels for this configuration of parameters?

I more or less computed them in the graph, but I assumed a specific value for α, let’s do it
again. We have Y ∗ = αy + βyP ∗ = 1 + 0P ∗ = 1. As for y∗ and P ∗:

y∗ =
αm − αb

βb + βm
=

α

1
= α

P ∗ =
αy(βm + βb)

αm − αb − βy(βb + βm)
=

1
α

So P ∗ = 1
α , y∗ = α and Y ∗ = 1.

e . Show that the model dynamics can be summarized by a first-order difference

equation in Pt (of the type Pt+1 = f(Pt), with f some function that you need to find;

you can also look for an equation of the type ΔPt = g(Pt) with g some function to

find , if it is easier for you to do so) .

This question is a very involved way of asking: what are the time dynamics of Pt? You know
from your lecture notes that Ṗ = [b(yt) − m(yt)]Pt. However, we are in discrete time here, as
the question asks for a difference equation (not differential), therefore in this case Ṗ  is
substituted by Pt+1 − Pt. We just have to work out the expression above and plug values for
the parameters.

Pt+1 − Pt = [b(yt) − m(yt)]Pt

= [ + βbyt − αm + βmyt]Pt since αb = 0

= [(βb + βm)yt − α]Pt since αm = α

= [yt − α]Pt since βb + βm = 1

= [
αy

Pt

+ by − α]Pt substituting yt(Pt)

= [ 1
Pt

− α]Pt since αy = 1 and βy = 0

Pt+1 − Pt = 1 − αPt

Pt+1 = Pt(1 − α) + 1

αb



f . Study the convergence of population to its steady state starting from an initial

value of population P0 close to 0 for the following values of α: (i) 0 < α < 1,

(ii) α = 1, (iii) 1 < α < 2.

This question basically asks you to study the dynamics of population for different values of α. It
is more or less about plugging numbers. Let's start from t = 1 and see what the dynamics look
like. Since 1 − α is a bit uncomfortable I substitute it with γ = 1 − α. Let’s start easy and
substitute numbers time by time.

You see the pattern. By thinking a little bit you should realise that we can express Pt in the
following way:

Pt(γ) = γ tP0 +
t−1

∑
s=0

γ s

For t → ∞ , by the rules of power series, we have:

We are ready to evaluate the convergence. The following table gives a relationship between
1 − α and γ .

Case (ii) is the easiest. If γ = 0 then Pt = 1 for any t. Population is fixed since the beginning, so
in some sense we already converged from the start to 1.

In case (i) we have 0 < γ < 1. If we have no clue we can take one number and see what
happens. Let's try γ = 0.5. We have the following series (assuming P0 is close to 0):

P1 = γP0 + 1
P2 = γP1 + 1

= (γP0 + 1)γ + 1
= γ 2P0 + γ + 1

P3 = γP2 + 1
= (γ 2P0 + γ + 1)γ + 1
= γ 3P0 + γ 2 + γ + 1

P∞(γ) = γ ∞P0 +
∞

∑
s=0

γ s

= γ ∞P0 +
1

1 − γ

α γ

(i) 0 < α < 1 0 < γ < 1
(ii) 1 0
(iii) 1 < α < 2 −1 < γ < 0



In the following picture you can see the series graphically:

Figure 1: Series with γ = 0.5.

You can see where we are going. We can immediately compute P∞ from the expression above
(remember that for any −1 < γ < 1 we have that γ ∞ = 0):

P∞(0.5) = 0P0 +
1

1 − 0.5
=

1
0.5

= 2

What we conclude is that for a value of α between 0 and 1 population grows, slower at each
step, and eventually reaches a steady state level (different for different values of γ).

As for case (iii) , with −1 < γ < 0, we use the same strategy, namely plugging numbers for the
specific value γ = −0.5. The series looks like this:

As before, I plotted the series:

P1 = 0.5P0 + 1 ≈ 1
P2 = 0.5(1) + 1 = 1.5
P3 = 0.5(1.5) + 1 = 1.75
P4 = 0.5(1.75) + 1 = 1.875
P5 = 1.9375
P6 = 1.96875

⋮

P1 = −0.5P0 + 1 ≈ 1
P2 = −0.5(1) + 1 = 0.5
P3 = −0.5(0.5) + 1 = 0.75
P4 = −0.5(0.75) + 1 = 0.625
P5 = 0.6875
P6 = 0.65625
P7 = 0.671875

⋮



Figure 2: Series with γ = −0.5.

As you can see the series here goes up and down, it is not monotonic in its growth, contrary to
the previous case. However, we can see where it converges to:

P∞(−0.5) = 0P0 +
1

1 − (−0.5)
=

1
1.5

= 0.6̄

Interestingly, notice that the term P0 has in both case no role in determining the convergence,
only shaped by γ.


